skip to main content


This content will become publicly available on January 1, 2025

Title: Loss-tolerant all-optical distributed sensing

We investigate a resource-efficient distributed quantum sensing (DQS) scheme using phase-sensitive optical parametric amplifiers and linear optics, achieving sensitivity levels close to the optimal limit determined by the quantum Fisher information of the resource state.

 
more » « less
Award ID(s):
1846273
NSF-PAR ID:
10544733
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optica Publishing Group
Date Published:
ISBN:
978-1-957171-39-5
Page Range / eLocation ID:
ATh1G.6
Format(s):
Medium: X
Location:
Charlotte, North Carolina
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a systematic study of quantum receivers and modulation methods enabling resource efficient quantum-enhanced optical communication. We introduce quantum-inspired modulation schemes that theoretically yield a better resource efficiency than legacy protocols. Experimentally, we demonstrate below the shot-noise limit symbol error rates forM ≤ 16 legacy and quantum-inspired communication alphabets using software-configurable optical communication time-resolving quantum receiver testbed. Further, we experimentally verify that our quantum-inspired modulation schemes boost the accuracy of practical quantum measurements and significantly optimize the combined use of energy and bandwidth for communication alphabets that are longer thanM = 4 symbols.

     
    more » « less
  2. Abstract

    To achieve universal quantum computation via general fault-tolerant schemes, stabilizer operations must be supplemented with other non-stabilizer quantum resources. Motivated by this necessity, we develop a resource theory for magic quantum channels to characterize and quantify the quantum ‘magic’ or non-stabilizerness of noisy quantum circuits. For qudit quantum computing with odd dimensiond, it is known that quantum states with non-negative Wigner function can be efficiently simulated classically. First, inspired by this observation, we introduce a resource theory based on completely positive-Wigner-preserving quantum operations as free operations, and we show that they can be efficiently simulated via a classical algorithm. Second, we introduce two efficiently computable magic measures for quantum channels, called the mana and thauma of a quantum channel. As applications, we show that these measures not only provide fundamental limits on the distillable magic of quantum channels, but they also lead to lower bounds for the task of synthesizing non-Clifford gates. Third, we propose a classical algorithm for simulating noisy quantum circuits, whose sample complexity can be quantified by the mana of a quantum channel. We further show that this algorithm can outperform another approach for simulating noisy quantum circuits, based on channel robustness. Finally, we explore the threshold of non-stabilizerness for basic quantum circuits under depolarizing noise.

     
    more » « less
  3. null (Ed.)
    We present a novel method for working with the physicist's method of amortized resource analysis, which we call the quantum physicist's method. These principles allow for more precise analyses of resources that are not monotonically consumed, like stack. This method takes its name from its two major features, worldviews and resource tunneling, which behave analogously to quantum superposition and quantum tunneling. We use the quantum physicist's method to extend the Automatic Amortized Resource Analysis (AARA) type system, enabling the derivation of resource bounds based on tree depth. In doing so, we also introduce remainder contexts, which aid bookkeeping in linear type systems. We then evaluate this new type system's performance by bounding stack use of functions in the Set module of OCaml's standard library. Compared to state-of-the-art implementations of AARA, our new system derives tighter bounds with only moderate overhead. 
    more » « less
  4. One-way quantum repeaters where loss and operational errors are counteracted by quantum error-correcting codes can ensure fast and reliable qubit transmission in quantum networks. It is crucial that the resource requirements of such repeaters, for example, the number of qubits per repeater node and the complexity of the quantum error-correcting operations are kept to a minimum to allow for near-future implementations. To this end, we propose a one-way quantum repeater that targets both the loss and operational error rates in a communication channel in a resource-efficient manner using code concatenation. Specifically, we consider a tree-cluster code as an inner loss-tolerant code concatenated with an outer 5-qubit code for protection against Pauli errors. Adopting flag-based stabilizer measurements, we show that intercontinental distances of up to 10,000 km can be bridged with a minimized resource overhead by interspersing repeater nodes that each specialize in suppressing either loss or operational errors. Our work demonstrates how tailored error-correcting codes can significantly lower the experimental requirements for long-distance quantum communication. 
    more » « less
  5. Abstract

    Designing quantum algorithms for simulating quantum systems has seen enormous progress, yet few studies have been done to develop quantum algorithms for open quantum dynamics despite its importance in modeling the system-environment interaction found in most realistic physical models. In this work we propose and demonstrate a general quantum algorithm to evolve open quantum dynamics on quantum computing devices. The Kraus operators governing the time evolution can be converted into unitary matrices with minimal dilation guaranteed by the Sz.-Nagy theorem. This allows the evolution of the initial state through unitary quantum gates, while using significantly less resource than required by the conventional Stinespring dilation. We demonstrate the algorithm on an amplitude damping channel using the IBM Qiskit quantum simulator and the IBM Q 5 Tenerife quantum device. The proposed algorithm does not require particular models of dynamics or decomposition of the quantum channel, and thus can be easily generalized to other open quantum dynamical models.

     
    more » « less