skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 28, 2025

Title: Climate sensitivity and relative humidity changes in global storm-resolving model simulations of climate change
The climate simulation frontier of a global storm-resolving model (GSRM; or k-scale model because of its kilometer-scale horizontal resolution) is deployed for climate change simulations. The climate sensitivity, effective radiative forcing, and relative humidity changes are assessed in multiyear atmospheric GSRM simulations with perturbed sea-surface temperatures and/or carbon dioxide concentrations. Our comparisons to conventional climate model results can build confidence in the existing climate models or highlight important areas for additional research. This GSRM’s climate sensitivity is within the range of conventional climate models, although on the lower end as the result of neutral, rather than amplifying, shortwave feedbacks. Its radiative forcing from carbon dioxide is higher than conventional climate models, and this arises from a bias in climatological clouds and an explicitly simulated high-cloud adjustment. Last, the pattern and magnitude of relative humidity changes, simulated with greater fidelity via explicitly resolving convection, are notably similar to conventional climate models.  more » « less
Award ID(s):
1743753
PAR ID:
10544806
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Association for the Advancement of Science
Date Published:
Journal Name:
Science Advances
Volume:
10
Issue:
26
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Radiative feedbacks govern the Earth's climate sensitivity and elucidate the geographic patterns of climate change in response to a carbon‐dioxide forcing. We develop an analytical model for patterned radiative feedbacks that depends only on changes in local surface temperature. The analytical model combines well‐known moist adiabatic theory with the radiative‐advective equilibrium that describes the energy balance in high latitudes. Together with a classic analytical function for surface albedo, all of the non‐cloud feedbacks are represented. The kernel‐based analytical feedbacks reproduce the feedbacks diagnosed from global climate models at the global, zonal‐mean, and seasonal scales, including in the polar regions, though with less intermodel spread. The analytical model thus provides a framework for a quantitative understanding of radiative feedbacks from simple physics, independent of the detailed atmospheric and cryospheric responses simulated by comprehensive climate models. 
    more » « less
  2. Abstract Do changes in ocean heat transport (OHT) that occur with CO 2 forcing, impact climate sensitivity in Earth system models? Changes in OHT with warming are ubiquitous in model experiments: when forced with CO 2 , such models exhibit declining poleward OHT in both hemispheres at most latitudes, which can persist over multicentennial time scales. To understand how changes in OHT may impact how the climate system responds to CO 2 forcing, particularly climate sensitivity, we perform a series of Earth system model experiments in which we systematically perturb OHT (in a slab ocean, relative to its preindustrial control climatology) while simultaneously doubling atmospheric CO 2 . We find that equilibrium climate sensitivity varies substantially with OHT. Specifically, there is a 0.6 K decrease in global mean surface warming for every 10% decline in poleward OHT. Radiative feedbacks from CO 2 doubling, and the warming attributable to each of them, generally become more positive (or less negative) when poleward OHT increases. Water vapor feedback differences account for approximately half the spread in climate sensitivity between experiments, while differences in the lapse rate and surface albedo feedbacks account for the rest. Prescribed changes in OHT instigate opposing changes in atmospheric energy transport and the general circulation, which explain differences in atmospheric water vapor and lapse rate between experiments. Our results show that changes in OHT modify atmospheric radiative feedbacks at all latitudes, thereby driving changes in equilibrium climate sensitivity. More broadly, they demonstrate that radiative feedbacks are not independent of the coupled (atmosphere and ocean) dynamic responses that accompany greenhouse gas forcing. 
    more » « less
  3. Abstract. Recent analyses show the importance of methane shortwave absorption, which many climate models lack. In particular, Allen et al. (2023) used idealized climate model simulations to show that methane shortwave absorption mutes up to 30 % of the surface warming and 60 % of the precipitation increase associated with its longwave radiative effects. Here, we explicitly quantify the radiative and climate impacts due to shortwave absorption of the present-day methane perturbation. Our results corroborate the hypothesis that present-day methane shortwave absorption mutes the warming effects of longwave absorption. For example, the global mean cooling in response to the present-day methane shortwave absorption is -0.10±0.07 K, which offsets 28 % (7 %–55 %) of the surface warming associated with present-day methane longwave radiative effects. The precipitation increase associated with the longwave radiative effects of the present-day methane perturbation (0.012±0.006 mm d−1) is also muted by shortwave absorption but not significantly so (-0.008±0.009 mm d−1). The unique responses to methane shortwave absorption are related to its negative top-of-the-atmosphere effective radiative forcing but positive atmospheric heating and in part to methane's distinctive vertical atmospheric solar heating profile. We also find that the present-day methane shortwave radiative effects, relative to its longwave radiative effects, are about 5 times larger than those under idealized carbon dioxide perturbations. Additional analyses show consistent but non-significant differences between the longwave versus shortwave radiative effects for both methane and carbon dioxide, including a stronger (negative) climate feedback when shortwave radiative effects are included (particularly for methane). We conclude by reiterating that methane remains a potent greenhouse gas. 
    more » « less
  4. Abstract The Radiative‐Convective Equilibrium Model Intercomparison Project (RCEMIP) exhibits a large spread in the simulated climate across models, including in profiles of buoyancy and relative humidity. Here we use simple theory to understand the control of stability, relative humidity, and their responses to warming. Across the RCEMIP ensemble, temperature profiles are systematically cooler than a moist adiabat, and convective available potential energy (CAPE) increases with warming at a rate greater than that expected from the Clausius‐Clapeyron relation. There is higher CAPE (greater instability) in models that are on average moister in the lower‐troposphere. To more explicitly evaluate the drivers of the intermodel spread, we use simple theory to estimate values of entrainment and precipitation efficiency (PE) given the simulated values of CAPE and lower‐tropospheric relative humidity. We then decompose the intermodel spread in CAPE and relative humidity (and their responses to warming) into contributions from variability in entrainment, PE, the temperature of the convecting top, and the inverse water vapor scale height. Model‐to‐model variation in entrainment is a dominant source of intermodel spread in CAPE and its changes with warming, while variation in PE is the dominant source of intermodel spread in relative humidity. We also decompose the magnitude of the CAPE increase with warming and find that atmospheric warming itself contributes most strongly to the CAPE increase, but the indirect effect of increases in the water vapor scale height with warming also contribute to increasing CAPE beyond that expected from Clausius‐Clapeyron. 
    more » « less
  5. Abstract This study assesses the effective climate sensitivity (EffCS) and transient climate response (TCR) derived from global energy budget constraints within historical simulations of eight CMIP6 global climate models (GCMs). These calculations are enabled by use of the Radiative Forcing Model Intercomparison Project (RFMIP) simulations, which permit accurate quantification of the radiative forcing. Long‐term historical energy budget constraints generally underestimate EffCS from CO2quadrupling and TCR from CO2ramping, owing to changes in radiative feedbacks and changes in ocean heat uptake efficiency. Atmospheric GCMs forced by observed warming patterns produce lower values of EffCS that are more in line with those inferred from observed historical energy budget changes. The differences in the EffCS estimates from historical energy budget constraints of models and observations are traced to discrepancies between modeled and observed historical surface warming patterns. 
    more » « less