skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Artificial Intelligence in manufacturing: State of the art, perspectives, and future directions
Inspired by the natural intelligence of humans and bio-evolution, Artificial Intelligence (AI) has seen accelerated growth since the beginning of the 21st century. Successful AI applications have been broadly reported, with Industry 4.0 providing a thematic platform for AI-related research and development in manufacturing. This paper highlights applications of AI in manufacturing, ranging from production system design and planning to process modeling, optimization, quality assurance, maintenance, automated assembly and disassembly. In addition, the paper presents an overview of representative manufacturing problems and matching AI solutions, and a perspective of future research to leverage AI towards the realization of smart manufacturing.  more » « less
Award ID(s):
2125460
PAR ID:
10544873
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
CIRP Annals
Volume:
73
Issue:
2
ISSN:
0007-8506
Page Range / eLocation ID:
723 to 749
Subject(s) / Keyword(s):
Artificial Intelligence, Smart Manufacturing, Machine Learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Today’s manufacturing systems are becoming increasingly complex, dynamic, and connected. The factory operations face challenges of highly nonlinear and stochastic activity due to the countless uncertainties and interdependencies that exist. Recent developments in artificial intelligence (AI), especially Machine Learning (ML) have shown great potential to transform the manufacturing domain through advanced analytics tools for processing the vast amounts of manufacturing data generated, known as Big Data. The focus of this paper is threefold: (1) review the state-of-the-art applications of AI to representative manufacturing problems, (2) provide a systematic view for analyzing data and process dependencies at multiple levels that AI must comprehend, and (3) identify challenges and opportunities to not only further leverage AI for manufacturing, but also influence the future development of AI to better meet the needs of manufacturing. To satisfy these objectives, the paper adopts the hierarchical organization widely practiced in manufacturing plants in examining the interdependencies from the overall system level to the more detailed granular level of incoming material process streams. In doing so, the paper considers a wide range of topics from throughput and quality, supervisory control in human–robotic collaboration, process monitoring, diagnosis, and prognosis, finally to advances in materials engineering to achieve desired material property in process modeling and control. 
    more » « less
  2. Artificial Intelligence (AI) bots receive much attention and usage in industry manufacturing and even store cashier applications. Our research is to train AI bots to be software engineering assistants, specifically to detect biases and errors inside AI software applications. An example application is an AI machine learning system that sorts and classifies people according to various attributes, such as the algorithms involved in criminal sentencing, hiring, and admission practices. Biases, unfair decisions, and flaws in terms of the equity, diversity, and justice presence, in such systems could have severe consequences. As a Hispanic-Serving Institution, we are concerned about underrepresented groups and devoted an extended amount of our time to implementing “An Assure AI” (AAAI) Bot to detect biases and errors in AI applications. Our state-of-the-art AI Bot was developed based on our previous accumulated research in AI and Deep Learning (DL). The key differentiator is that we are taking a unique approach: instead of cleaning the input data, filtering it out and minimizing its biases, we trained our deep Neural Networks (NN) to detect and mitigate biases of existing AI models. The backend of our bot uses the Detection Transformer (DETR) framework, developed by Facebook, 
    more » « less
  3. Nanomanufacturing and digital manufacturing (DM) are defining the forefront of the fourth industrial revolution—Industry 4.0—as enabling technologies for the processing of materials spanning several length scales. This review delineates the evolution of nanomaterials and nanomanufacturing in the digital age for applications in medicine, robotics, sensory technology, semiconductors, and consumer electronics. The incorporation of artificial intelligence (AI) tools to explore nanomaterial synthesis, optimize nanomanufacturing processes, and aid high-fidelity nanoscale characterization is discussed. This paper elaborates on different machine-learning and deep-learning algorithms for analyzing nanoscale images, designing nanomaterials, and nano quality assurance. The challenges associated with the application of machine- and deep-learning models to achieve robust and accurate predictions are outlined. The prospects of incorporating sophisticated AI algorithms such as reinforced learning, explainable artificial intelligence (XAI), big data analytics for material synthesis, manufacturing process innovation, and nanosystem integration are discussed. 
    more » « less
  4. This paper studies the design of an AI tool that supports gig knowledge workers, rather than displacing them, focusing on text-based generative AI technologies. Through a formative study involving interviews and design activities, gig workers shared their views on text-based generative AI and envisioned applications where AI acts as managers, secretaries, and communication aids. Leveraging these insights, we created a generative-AI enhanced tool, Office-Mind AI, to aid gig workers. Our research advances the conversation around algorithmic labor by designing a worker-focused intelligent tool. This tool harness collective intelligence among workers and AI, fostering productive human-AI partnerships. We conclude by discussing the future prospects of collective intelligence tools designed for worker-AI collaborations. 
    more » « less
  5. Purpose This study reviews existing research and current applications of artificial intelligence (AI) in the hospitality and tourism industry. It further proposes a new evaluation framework to inform the susceptibility of AI adoptions. Design/methodology/approach This is a synthesis and evaluation study that qualitatively summarizes and presents findings on AI applications in the hospitality and tourism industry. Current AI applications are rated using a seven-dimensional framework based on Rogers' (2003) diffusion theory. Findings AI adoption susceptibility in the hospitality and tourism industry varies based on the type of AI. Search/booking engines, virtual agents and chatbots rank high in the adoption susceptibility. Research limitations/implications This study bridges innovation diffusion theoretical underpinnings and AI applications. The findings support researchers, developers and managers in evaluating the adoption susceptibility of AI technologies in the hospitality and tourism industry. Originality/value This paper is among the few that focus on assessing AI adoption susceptibility in the hospitality and tourism industry. This paper develops a theory-based framework for systematically evaluating AI innovations in hospitality and tourism. 
    more » « less