skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2040288

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Accurate quantification of machined surface roughness is crucial to the characterization of part performance measures, including aerodynamics and biocompatibility. Given this cruciality, there exists a need for predictive metrology models which can predict the surface roughness before a part leaves a machine to reduce metrologyinduced bottlenecks and improve production planning efficiency under emergent production paradigms, e.g., Industry 4.0. Current predictive metrology approaches in machining generally train machine learning models on all available input features at once. However, this approach yields a high number of free parameters during all states of training, possibly leading to suboptimal prediction results because of the complexity of simultaneously optimizing all parameters at once. In addition, previous machine learning-enabled surface roughness prediction studies have used limited test dataset sizes, which reduces the reliability and robustness of the reported results. To address these limitations, this study proposes a two-stage model training approach based on domainincremental learning, wherein a second stage of training is performed using an expanded input domain. The proposed method is evaluated on a 3,000-element experimentally collected testing dataset of machined H13 tool steel surfaces, where it achieves 16.3 % roughness prediction error compared to the 29.5 % error of the conventional single-stage training approach, indicating the suitability of the two-stage training method for reducing surface roughness prediction error. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Inspired by the natural intelligence of humans and bio-evolution, Artificial Intelligence (AI) has seen accelerated growth since the beginning of the 21st century. Successful AI applications have been broadly reported, with Industry 4.0 providing a thematic platform for AI-related research and development in manufacturing. This paper highlights applications of AI in manufacturing, ranging from production system design and planning to process modeling, optimization, quality assurance, maintenance, automated assembly and disassembly. In addition, the paper presents an overview of representative manufacturing problems and matching AI solutions, and a perspective of future research to leverage AI towards the realization of smart manufacturing. 
    more » « less
  3. During machining, kinetic energy is imparted to a workpiece to remove material. The integrity of the machined surface, which depends on the energy transfer, affects the quality and performance of the product, therefore needs to be quantified. Prior studies have indicated the potential of using machining power, or the power consumption at the tool-chip interface, as a process signature for predicting machined surface integrity. However, direct measurement of machining power is constrained by the availability of special equipment and the associated cost. To address this gap, this paper presents a machine learning-based method for machining power prediction through multi-sensor fusion and sequence-to-sequence translation from acoustic and vibration signals, which represent portions of the in-situ kinetic energy dissipation, to the machining power signal as a process signature. Specifically, a neural network architecture is developed to separately translate the acoustic and vibration signals to corresponding machining power signals. The two predicted power signals are subsequently fused to arrive at a unified power signal prediction. To check for spurious decision logic, the sensor fusion model is interpreted using integrated gradients to reveal temporal regions of the input data which have the most influence on the machining power prediction accuracy of the fusion model. Systematic cutting experiments performed on a lathe using 1018 steel have shown that the developed sensor fusion method for process signature prediction can successfully map machine acoustics to power consumption with 5.6% error, tool vibration to power consumption with 8.2% error, and acoustics and vibration, jointly, to power with 2.5% error. Model parameter interpretation reveals that the vibration signal is more influential on the machining power prediction result than the acoustic signal, but that overall model accuracy is diminished if only the vibration signal is used. 
    more » « less
  4. Prediction of surface topography in milling usually requires complex kinematics and dynamics modeling of the milling process, plus solving physical models of surface generation is a daunting task. This paper presents a multimodal data-driven machine learning (ML) method to predict milled surface topography. The proposed method predicts the height map of the surface topography by fusing process parameters and in-process acoustic information as model inputs. This method has been validated by comparing the predicted surface topography with the measured data. 
    more » « less
  5. Predicting machined surface roughness is critical for estimating a part’s performance characteristics such as susceptibility to fatigue and corrosion. Prior studies have indicated that power consumed at the tool-chip interface may represent an indicator for the surface integrity of the machining process. However, no quantita-tive association has been reported between the machining power and surface roughness due to a lack of data to develop predictive models. This paper presents a data synthesis method to address this gap. Specifically, a conditional generative adversarial network (CGAN) is developed to synthesize power signals associated with varying process parameter combinations. The quality of the synthesized signals is evaluated against experimentally measured power signals by examining the consistency in: 1) the spatial pattern of the signals induced by the cutting process as shown in the frequency domain, and 2) the temporal pattern as shown in the clustering of the synthesized and measured signals corresponding to the same parameter combination. The synthesized signals are then used to augment the measured signals and develop a convolutional neural network (CNN) for predicting the machined surface roughness. Experiments performed using H13 tool steel have shown that data augmentation by CGAN has effectively reduced the error of the surface roughness prediction from 58 %, when no synthetic data is used for CNN training, to 9.1 % when 250 synthetic samples are used. The results demonstrate the effectiveness of CGAN as a data augmentation method and CNN for mapping machining power to surface roughness. 
    more » « less
  6. Machine learning (ML) has shown to be an effective alternative to physical models for quality prediction and process optimization of metal additive manufacturing (AM). However, the inherent “black box” nature of ML techniques such as those represented by artificial neural networks has often presented a challenge to interpret ML outcomes in the framework of the complex thermodynamics that govern AM. While the practical benefits of ML provide an adequate justification, its utility as a reliable modeling tool is ultimately reliant on assured consistency with physical principles and model transparency. To facilitate the fundamental needs, physics-informed machine learning (PIML) has emerged as a hybrid machine learning paradigm that imbues ML models with physical domain knowledge such as thermomechanical laws and constraints. The distinguishing feature of PIML is the synergistic integration of data-driven methods that reflect system dynamics in real-time with the governing physics underlying AM. In this paper, the current state-of-the-art in metal AM is reviewed and opportunities for a paradigm shift to PIML are discussed, thereby identifying relevant future research directions. 
    more » « less