skip to main content


This content will become publicly available on September 27, 2025

Title: O-RAN Performance Analyzer: Platform Design, Development, and Deployment
The open radio access network (O-RAN) represents a paradigm shift in RAN architecture, integrating intelligence into communication networks via xApps -- control applications for managing RAN resources. This integration facilitates the adoption of AI for network optimization and resource management. However, there is a notable gap in practical network performance analyzers capable of assessing the functionality and efficiency of xApps in near real-time within operational networks. Addressing this gap, this article introduces a comprehensive network performance analyzer, tailored for the near-real time RAN intelligent controller. We present the design, development, and application scenarios for this testing framework, including its components, software, and tools, providing an end-to-end solution for evaluating the performance of xApps in O-RAN environments.  more » « less
Award ID(s):
2120442
PAR ID:
10544903
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE/ieeeXplore
Date Published:
Journal Name:
IEEE Communications Magazine
ISSN:
0163-6804
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Open Radio Access Network (O-RAN) has introduced an emerging RAN architecture that enables openness, intelligence, and automated control. The RAN Intelligent Controller (RIC) provides the platform to design and deploy network controllers. xApps are the applications that can leverage machine learning (ML) algorithms for near-real time control. Despite the opportunities provided by this new architecture, the progress of practical artificial intelligence (AI)-based solutions for network control and automation has been slow. There is a lack of end-to-end solutions for designing, deploying, and testing AI-based xApps in production-like network settings. This paper introduces an end-to-end O-RAN design and evaluation procedure using the latest O-RAN architecture and interface releases. We provide details on the development of a reinforcement learning (RL)-based xApp, considering two RL approaches and present numerical results to validate the xApp. 
    more » « less
  2. The evolution of open architectures for Radio Ac-cess Networks (RANs) is revolutionizing network management and optimization. This transformation, fostered by O-RAN, expedites data acquisition and examination by exploiting newly established open interfaces. Moreover, it has led to the rise of near real-time RAN Intelligent Controllers (RICs), instigating a wave of AI-driven applications, or xApps, that employ Artificial Intelligence (AI)/Machine Learning (ML) methods. Nevertheless, deploying xApps as centralized applications presents substantial challenges, such as handling vast data transactions, potential delays, and security vulnerabilities, which are notably prominent within the multifaceted, decentralized, multivendor, and trustless nature of open networks. To alleviate these predicaments, a transition from centralized apps operating in near real-time to distributed real-time apps is imperative for augmented security and efficiency. This paper addresses these complexities by introducing an open platform that integrates a federated reinforcement learning algorithm to operate as distributed Apps (dApps) within the next-generation O-RAN architecture. We present evaluation results in a specific test environment. 
    more » « less
  3. The open radio access network (O-RAN) offers new degrees of freedom for building and operating advanced cellular networks. Emphasizing on RAN disaggregation, open interfaces, multi-vendor support, and RAN intelligent controllers (RICs), O-RAN facilitates adaptation to new applications and technology trends. Yet, this architecture introduces new security challenges. This article proposes leveraging zero trust principles for O-RAN security. We introduce zero trust RAN (ZTRAN), which embeds service authentication, intrusion detection, and secure slicing subsystems that are encapsulated as xApps. We implement ZTRAN on the open artificial intelligence cellular (OAIC) research platform and demonstrate its feasibility and effectiveness in terms of legitimate user throughput and latency figures. Our experimental analysis illustrates how ZTRAN's intrusion detection and secure slicing microservices operate effectively and in concert as part of O-RAN Alliance's containerized near-real time RIC. Research directions include exploring machine learning and additional threat intelligence feeds for improving the performance and extending the scope of ZTRAN. 
    more » « less
  4. The advancement of 5G and NextG networks through Open Radio Access Network (O-RAN) architecture marks a transformative shift towards more virtualized, modular, and disaggregated configurations. A critical component within this O-RAN architecture is the RAN Intelligent Controller (RIC), which facilitates the management and control of the RAN through sophisticated machine learning-driven software microservices known as xApps. These xApps rely on accessing a diverse range of sensitive data from RAN and User Equipment (UE), stored in the near Real-Time RIC (Near-RT RIC) database. The inherent nature of this shared, multi-vendor, and open environment significantly raises the risk of unauthorized sensitive RAN/UE data exposure. In response to these privacy concerns, this paper proposes a privacy-preserving zero-trust RIC (dubbed as, ZT-RIC) framework that preserves RAN/UE data privacy within the RIC platform (i.e., shared RIC database, xApp, and E2 interface). The underlying idea is to employ a computationally efficient cryptographic technique called Inner Product Functional Encryption (IPFE) to encrypt the RAN/UE data at the base station, thus, preventing data leaks over the E2 interface and shared RIC database. Furthermore, ZT-RIC customizes the xApp’s inference model by leveraging the inner product operations on encrypted data supported by IPFE to enable xApp to make accurate inferences without data exposure. For evaluation purposes, we leverage a state-of-the-art InterClass xApp, which utilizes RAN key performance metrics (KPMs) to identify jamming signals within the wireless network. Prototyping on an LTE/5G O-RAN testbed demonstrates that ZT-RIC not only ensures data privacy/confidentiality but also guarantees a desired model accuracy, evidenced by a 97.9% accuracy in detecting jamming signals as well as meeting stringent sub-second timing requirement with a round-trip time (RTT) of 0.527 
    more » « less
  5. This demonstration explores the security concerns in 5G and beyond networks within open radio access network (O-RAN) deployments, focusing on active attacks disrupting cellular communications. An xApp developed on the open artificial intelligence cellular (OAIC) platform enables on-the-fly creation and management of network slices to mitigate such attacks. The xApp is hosted in the near-real time RAN intelligent controller (RIC) and establishes secure slices for the software radio network it controls. This solution presents a practical approach for resilient and secure network management in dynamic environments. 
    more » « less