skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: O-RAN Performance Analyzer: Platform Design, Development, and Deployment
The open radio access network (O-RAN) represents a paradigm shift in RAN architecture, integrating intelligence into communication networks via xApps -- control applications for managing RAN resources. This integration facilitates the adoption of AI for network optimization and resource management. However, there is a notable gap in practical network performance analyzers capable of assessing the functionality and efficiency of xApps in near real-time within operational networks. Addressing this gap, this article introduces a comprehensive network performance analyzer, tailored for the near-real time RAN intelligent controller. We present the design, development, and application scenarios for this testing framework, including its components, software, and tools, providing an end-to-end solution for evaluating the performance of xApps in O-RAN environments.  more » « less
Award ID(s):
2120442
PAR ID:
10544903
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE/ieeeXplore
Date Published:
Journal Name:
IEEE Communications Magazine
ISSN:
0163-6804
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Open Radio Access Network (O-RAN) has introduced an emerging RAN architecture that enables openness, intelligence, and automated control. The RAN Intelligent Controller (RIC) provides the platform to design and deploy network controllers. xApps are the applications that can leverage machine learning (ML) algorithms for near-real time control. Despite the opportunities provided by this new architecture, the progress of practical artificial intelligence (AI)-based solutions for network control and automation has been slow. There is a lack of end-to-end solutions for designing, deploying, and testing AI-based xApps in production-like network settings. This paper introduces an end-to-end O-RAN design and evaluation procedure using the latest O-RAN architecture and interface releases. We provide details on the development of a reinforcement learning (RL)-based xApp, considering two RL approaches and present numerical results to validate the xApp. 
    more » « less
  2. The evolution of open architectures for Radio Ac-cess Networks (RANs) is revolutionizing network management and optimization. This transformation, fostered by O-RAN, expedites data acquisition and examination by exploiting newly established open interfaces. Moreover, it has led to the rise of near real-time RAN Intelligent Controllers (RICs), instigating a wave of AI-driven applications, or xApps, that employ Artificial Intelligence (AI)/Machine Learning (ML) methods. Nevertheless, deploying xApps as centralized applications presents substantial challenges, such as handling vast data transactions, potential delays, and security vulnerabilities, which are notably prominent within the multifaceted, decentralized, multivendor, and trustless nature of open networks. To alleviate these predicaments, a transition from centralized apps operating in near real-time to distributed real-time apps is imperative for augmented security and efficiency. This paper addresses these complexities by introducing an open platform that integrates a federated reinforcement learning algorithm to operate as distributed Apps (dApps) within the next-generation O-RAN architecture. We present evaluation results in a specific test environment. 
    more » « less
  3. The Open Radio Access Network (O-RAN) architecture enables the deployment of third-party applications on the RAN Intelligent Controllers (RICs). However, the operation of third-party applications in the Near Real-Time RIC (Near-RT RIC), known as xApps, may result in conflicting interactions. Each xApp can independently modify the same control parameters to achieve distinct outcomes, which has the potential to cause performance degradation and network instability. The current conflict detection and mitigation solutions in the literature assume that all conflicts are known a priori, which does not always hold due to complex and often hidden relationships between control parameters and Key Performance Indicators (KPIs). In this paper, we introduce the first data-driven method for reconstructing and labeling conflict graphs in O-RAN. Specifically, we leverage GraphSAGE, an inductive learning framework, to dynamically learn the hidden relationships between xApps, parameters, and KPIs. Our numerical results, based on a conflict model used in the O-RAN conflict management literature, demonstrate that our proposed method can effectively reconstruct conflict graphs and identify the conflicts defined by the O-RAN Alliance. 
    more » « less
  4. The open radio access network (O-RAN) architecture introduces RAN intelligent controllers (RICs) to facilitate the management and optimization of the disaggregated RAN. Reinforcement learning (RL) and its advanced form, deep RL (DRL), are increasingly employed for designing intelligent controllers, or xApps, to be deployed in the near-real time (near-RT) RIC. These models often encounter local optima, which raise concerns about their reliability for RAN intelligent control. We therefore introduce Federated O-RAN enabled Neuroevolution (NE)-enhanced DRL (F-ONRL) that deploys an NE-based optimizer xApp in parallel to the RAN controller xApps. This NE-DRL xApp framework enables effective exploration and exploitation in the near-RT RIC without disrupting RAN operations. We implement the NE xApp along with a DRL xApp and deploy them on Open AI Cellular (OAIC) platform and present numerical results that demonstrate the improved robustness of xApps while effectively balancing the additional computational load. 
    more » « less
  5. The open radio access network (O-RAN) offers new degrees of freedom for building and operating advanced cellular networks. Emphasizing on RAN disaggregation, open interfaces, multi-vendor support, and RAN intelligent controllers (RICs), O-RAN facilitates adaptation to new applications and technology trends. Yet, this architecture introduces new security challenges. This article proposes leveraging zero trust principles for O-RAN security. We introduce zero trust RAN (ZTRAN), which embeds service authentication, intrusion detection, and secure slicing subsystems that are encapsulated as xApps. We implement ZTRAN on the open artificial intelligence cellular (OAIC) research platform and demonstrate its feasibility and effectiveness in terms of legitimate user throughput and latency figures. Our experimental analysis illustrates how ZTRAN's intrusion detection and secure slicing microservices operate effectively and in concert as part of O-RAN Alliance's containerized near-real time RIC. Research directions include exploring machine learning and additional threat intelligence feeds for improving the performance and extending the scope of ZTRAN. 
    more » « less