skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Actor-Critic Network for O-RAN Resource Allocation: xApp Design, Deployment, and Analysis
Open Radio Access Network (O-RAN) has introduced an emerging RAN architecture that enables openness, intelligence, and automated control. The RAN Intelligent Controller (RIC) provides the platform to design and deploy network controllers. xApps are the applications that can leverage machine learning (ML) algorithms for near-real time control. Despite the opportunities provided by this new architecture, the progress of practical artificial intelligence (AI)-based solutions for network control and automation has been slow. There is a lack of end-to-end solutions for designing, deploying, and testing AI-based xApps in production-like network settings. This paper introduces an end-to-end O-RAN design and evaluation procedure using the latest O-RAN architecture and interface releases. We provide details on the development of a reinforcement learning (RL)-based xApp, considering two RL approaches and present numerical results to validate the xApp.  more » « less
Award ID(s):
2120442
PAR ID:
10461932
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2022 IEEE Globecom Workshops (GC Wkshps)
Page Range / eLocation ID:
968 to 973
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The open radio access network (O-RAN) architecture introduces RAN intelligent controllers (RICs) to facilitate the management and optimization of the disaggregated RAN. Reinforcement learning (RL) and its advanced form, deep RL (DRL), are increasingly employed for designing intelligent controllers, or xApps, to be deployed in the near-real time (near-RT) RIC. These models often encounter local optima, which raise concerns about their reliability for RAN intelligent control. We therefore introduce Federated O-RAN enabled Neuroevolution (NE)-enhanced DRL (F-ONRL) that deploys an NE-based optimizer xApp in parallel to the RAN controller xApps. This NE-DRL xApp framework enables effective exploration and exploitation in the near-RT RIC without disrupting RAN operations. We implement the NE xApp along with a DRL xApp and deploy them on Open AI Cellular (OAIC) platform and present numerical results that demonstrate the improved robustness of xApps while effectively balancing the additional computational load. 
    more » « less
  2. The open radio access network (O-RAN) represents a paradigm shift in RAN architecture, integrating intelligence into communication networks via xApps -- control applications for managing RAN resources. This integration facilitates the adoption of AI for network optimization and resource management. However, there is a notable gap in practical network performance analyzers capable of assessing the functionality and efficiency of xApps in near real-time within operational networks. Addressing this gap, this article introduces a comprehensive network performance analyzer, tailored for the near-real time RAN intelligent controller. We present the design, development, and application scenarios for this testing framework, including its components, software, and tools, providing an end-to-end solution for evaluating the performance of xApps in O-RAN environments. 
    more » « less
  3. The Open Radio Access Network (O-RAN) architecture enables the deployment of third-party applications on the RAN Intelligent Controllers (RICs). However, the operation of third-party applications in the Near Real-Time RIC (Near-RT RIC), known as xApps, may result in conflicting interactions. Each xApp can independently modify the same control parameters to achieve distinct outcomes, which has the potential to cause performance degradation and network instability. The current conflict detection and mitigation solutions in the literature assume that all conflicts are known a priori, which does not always hold due to complex and often hidden relationships between control parameters and Key Performance Indicators (KPIs). In this paper, we introduce the first data-driven method for reconstructing and labeling conflict graphs in O-RAN. Specifically, we leverage GraphSAGE, an inductive learning framework, to dynamically learn the hidden relationships between xApps, parameters, and KPIs. Our numerical results, based on a conflict model used in the O-RAN conflict management literature, demonstrate that our proposed method can effectively reconstruct conflict graphs and identify the conflicts defined by the O-RAN Alliance. 
    more » « less
  4. The advancement of 5G and NextG networks through Open Radio Access Network (O-RAN) architecture marks a transformative shift towards more virtualized, modular, and disaggregated configurations. A critical component within this O-RAN architecture is the RAN Intelligent Controller (RIC), which facilitates the management and control of the RAN through sophisticated machine learning-driven software microservices known as xApps. These xApps rely on accessing a diverse range of sensitive data from RAN and User Equipment (UE), stored in the near Real-Time RIC (Near-RT RIC) database. The inherent nature of this shared, multi-vendor, and open environment significantly raises the risk of unauthorized sensitive RAN/UE data exposure. In response to these privacy concerns, this paper proposes a privacy-preserving zero-trust RIC (dubbed as, ZT-RIC) framework that preserves RAN/UE data privacy within the RIC platform (i.e., shared RIC database, xApp, and E2 interface). The underlying idea is to employ a computationally efficient cryptographic technique called Inner Product Functional Encryption (IPFE) to encrypt the RAN/UE data at the base station, thus, preventing data leaks over the E2 interface and shared RIC database. Furthermore, ZT-RIC customizes the xApp’s inference model by leveraging the inner product operations on encrypted data supported by IPFE to enable xApp to make accurate inferences without data exposure. For evaluation purposes, we leverage a state-of-the-art InterClass xApp, which utilizes RAN key performance metrics (KPMs) to identify jamming signals within the wireless network. Prototyping on an LTE/5G O-RAN testbed demonstrates that ZT-RIC not only ensures data privacy/confidentiality but also guarantees a desired model accuracy, evidenced by a 97.9% accuracy in detecting jamming signals as well as meeting stringent sub-second timing requirement with a round-trip time (RTT) of 0.527 
    more » « less
  5. The evolution of open architectures for Radio Ac-cess Networks (RANs) is revolutionizing network management and optimization. This transformation, fostered by O-RAN, expedites data acquisition and examination by exploiting newly established open interfaces. Moreover, it has led to the rise of near real-time RAN Intelligent Controllers (RICs), instigating a wave of AI-driven applications, or xApps, that employ Artificial Intelligence (AI)/Machine Learning (ML) methods. Nevertheless, deploying xApps as centralized applications presents substantial challenges, such as handling vast data transactions, potential delays, and security vulnerabilities, which are notably prominent within the multifaceted, decentralized, multivendor, and trustless nature of open networks. To alleviate these predicaments, a transition from centralized apps operating in near real-time to distributed real-time apps is imperative for augmented security and efficiency. This paper addresses these complexities by introducing an open platform that integrates a federated reinforcement learning algorithm to operate as distributed Apps (dApps) within the next-generation O-RAN architecture. We present evaluation results in a specific test environment. 
    more » « less