skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Building Socially-Equitable Public Models
Public models offer predictions to a variety of downstream tasks and have played a crucial role in various AI applications, showcasing their proficiency in accurate predictions. However, the exclusive emphasis on prediction accuracy may not align with the diverse end objectives of downstream agents. Recognizing the public model's predictions as a service, we advocate for integrating the objectives of downstream agents into the optimization process. Concretely, to address performance disparities and foster fairness among heterogeneous agents in training, we propose a novel Equitable Objective. This objective, coupled with a policy gradient algorithm, is crafted to train the public model to produce a more equitable/uniform performance distribution across downstream agents, each with their unique concerns. Both theoretical analysis and empirical case studies have proven the effectiveness of our method in advancing performance equity across diverse downstream agents utilizing the public model for their decision-making.  more » « less
Award ID(s):
2324941 1910208 2007115
PAR ID:
10544905
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
2024 International Conference on Machine Learning (ICML)
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We design online algorithms for the fair allocation of public goods to a set of N agents over a sequence of T rounds and focus on improving their performance using predictions. In the basic model, a public good arrives in each round, and every agent reveals their value for it upon arrival. The algorithm must irrevocably decide the investment in this good without exceeding a total budget of B across all rounds. The algorithm can utilize (potentially noisy) predictions of each agent’s total value for all remaining goods. The algorithm’s performance is measured using a proportional fairness objective, which informally demands that every group of agents be rewarded proportional to its size and the cohesiveness of its preferences. We show that no algorithm can achieve better than Θ(T/B) proportional fairness without predictions. With reasonably accurate predictions, the situation improves significantly, and Θ(log(T/B)) proportional fairness is achieved. We also extend our results to a general setting wherein a batch of L public goods arrive in each round and O(log(min(N,L) ·T/B)) proportional fairness is achieved. Our exact bounds are parameterized as a function of the prediction error, with performance degrading gracefully with increasing errors. 
    more » « less
  2. We design online algorithms for fair allocation of public goods to a set of N agents over a sequence of T rounds and focus on improving their performance using predictions. In the basic model, a public good arrives in each round, and every agent reveals their value for it upon arrival. The algorithm must irrevocably decide the investment in this good without exceeding a total budget of B across all rounds. The algorithm can utilize (potentially noisy) predictions of each agent’s total value for all remaining goods. The algorithm's performance is measured using a proportional fairness objective, which informally demands that every group of agents be rewarded proportional to its size and the cohesiveness of its preferences. We show that no algorithm can achieve better than Θ(T/B) proportional fairness without predictions. With reasonably accurate predictions, the situation improves significantly, and Θ(log(T/B)) proportional fairness is achieved. We also extend our results to a general setting wherein a batch of L public goods arrive in each round and O(log(min(N,L)T/B)) proportional fairness is achieved. Our exact bounds are parameterized as a function of the prediction error, with performance degrading gracefully with increasing errors. 
    more » « less
  3. Abstract Applying machine learning to clinical outcome prediction is challenging due to imbalanced datasets and sensitive tasks that contain rare yet critical outcomes and where equitable treatment across diverse patient groups is essential. Despite attempts, biases in predictions persist, driven by disparities in representation and exacerbated by the scarcity of positive labels, perpetuating health inequities. This paper introduces , a synthetic data generation approach leveraging large language models, to address these issues. enhances algorithmic performance and reduces bias by creating realistic, anonymous synthetic patient data that improves representation and augments dataset patterns while preserving privacy. Through experiments on multiple datasets, we demonstrate that boosts mortality prediction performance across diverse subgroups, achieving up to a 21% improvement in F1 Score without requiring additional data or altering downstream training pipelines. Furthermore, consistently reduces subgroup performance gaps, as shown by universal improvements in performance and fairness metrics across four experimental setups. 
    more » « less
  4. Real-world online matching markets (OMMs) often involve multiple objectives, such as maximizing relevance and diversity in online recommendation and crowdsourcing systems. In this paper, we propose a generic bi-objective maximization model for OMMs with the following features: (1) there are two types of agents—offline and online—with online agents arriving dynamically and stochastically; (2) upon each online agent’s arrival, an immediate and irrevocable decision must be made regarding which subset of relevant offline agents to assign; and (3) each offline and online agent has a specific matching capacity, i.e., an upper bound on the number of allowable matchings. Our model supports two general linear objective functions defined over all possible assignments to online agents. We formulate a bi-objective linear program (LP) and design an LP-based parameterized algorithm. Departing from prevalent non-adaptive attenuation methods, we introduce a time-adaptive attenuation framework that achieves an almost tight competitive ratio for each objective. To complement our theoretical analysis, we implement the proposed algorithm and evaluate it against several heuristics using two real-world datasets. Extensive experimental results demonstrate the flexibility and effectiveness of our approach, validating our theoretical predictions. 
    more » « less
  5. Malware poses an increasing threat to critical computing infrastructure, driving demand for more advanced detection and analysis methods. Although raw-binary malware classifiers show promise, they are limited in their capabilities and struggle with the challenges of modeling long sequences. Meanwhile, the rise of large language models (LLMs) in natural language processing showcases the power of massive, self-supervised models trained on heterogeneous datasets, offering flexible representations for numerous downstream tasks. The success behind these models is rooted in the size and quality of their training data, the expressiveness and scalability of their neural architecture, and their ability to learn from unlabeled data in a self-supervised manner. In this work, we take the first steps toward developing large malware language models (LMLMs), the malware analog to LLMs. We tackle the core aspects of this objective, namely, questions about data, models, pretraining, and finetuning. By pretraining a malware classification model with language modeling objectives, we were able to improve downstream performance on diverse practical malware classification tasks on average by 1.1% and up to 28.6%, indicating that these models could serve to succeed raw-binary malware classifiers. 
    more » « less