This paper presents a domain-guided approach for learning representations of scalp-electroencephalograms (EEGs) without relying on expert annotations. Expert labeling of EEGs has proven to be an unscalable process with low inter-reviewer agreement because of the complex and lengthy nature of EEG recordings. Hence, there is a need for machine learning (ML) approaches that can leverage expert domain knowledge without incurring the cost of labor-intensive annotations. Self-supervised learning (SSL) has shown promise in such settings, although existing SSL efforts on EEG data do not fully exploit EEG domain knowledge. Furthermore, it is unclear to what extent SSL models generalize to unseen tasks and datasets. Here we explore whether SSL tasks derived in a domain-guided fashion can learn generalizable EEG representations. Our contributions are three-fold: 1) we propose novel SSL tasks for EEG based on the spatial similarity of brain activity, underlying behavioral states, and age-related differences; 2) we present evidence that an encoder pretrained using the proposed SSL tasks shows strong predictive performance on multiple downstream classifications; and 3) using two large EEG datasets, we show that our encoder generalizes well to multiple EEG datasets during downstream evaluations.
more »
« less
Distributionally Robust Cross Subject EEG Decoding
Recently, deep learning has shown to be effective for Electroencephalography (EEG) decoding tasks. Yet, its performance can be negatively influenced by two key factors: 1) the high variance and different types of corruption that are inherent in the signal, 2) the EEG datasets are usually relatively small given the acquisition cost, annotation cost and amount of effort needed. Data augmentation approaches for alleviation of this problem have been empirically studied, with augmentation operations on spatial domain, time domain or frequency domain handcrafted based on expertise of domain knowledge. In this work, we propose a principled approach to perform dynamic evolution on the data for improvement of decoding robustness. The approach is based on distributionally robust optimization and achieves robustness by optimizing on a family of evolved data distributions instead of the single training data distribution. We derived a general data evolution framework based on Wasserstein gradient flow (WGF) and provides two different forms of evolution within the framework. Intuitively, the evolution process helps the EEG decoder to learn more robust and diverse features. It is worth mentioning that the proposed approach can be readily integrated with other data augmentation approaches for further improvements. We performed extensive experiments on the proposed approach and tested its performance on different types of corrupted EEG signals. The model significantly outperforms competitive baselines on challenging decoding scenarios.
more »
« less
- Award ID(s):
- 2223793
- PAR ID:
- 10544950
- Editor(s):
- Gal, Kobi; Nowé, Ann; Nalepa, Grzegorz J; Fairstein, Roy; Rădulescu, Roxana
- Publisher / Repository:
- IOS Press
- Date Published:
- Volume:
- 372
- ISBN:
- 978-1-64368-437-6
- Page Range / eLocation ID:
- 575-582;
- Format(s):
- Medium: X
- Location:
- Kraków, Poland
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Multi-view learning is a rapidly evolving research area focused on developing diverse learning representations. In neural data analysis, this approach holds immense potential by capturing spatial, temporal, and frequency features. Despite its promise, multi-view application to functional near-infrared spectroscopy (fNIRS) has remained largely unexplored. This study addresses this gap by introducing fNIRSNET, a novel framework that generates and fuses multi-view spatio-temporal representations using convolutional neural networks. It investigates the combined informational strength of oxygenated (HbO2) and deoxygenated (HbR) hemoglobin signals, further extending these capabilities by integrating with electroencephalography (EEG) networks to achieve robust multimodal classification. Experiments involved classifying neural responses to auditory stimuli with nine healthy participants. fNIRS signals were decomposed into HbO2/HbR concentration changes, resulting in Parallel and Merged input types. We evaluated four input types across three data compositions: balanced, subject, and complete datasets. Our fNIRSNET's performance was compared with eight baseline classification models and merged it with four common EEG networks to assess the efficacy of combined features for multimodal classification. Compared to baselines, fNIRSNET using the Merged input type achieved the highest accuracy of 83.22%, 81.18%, and 91.58% for balanced, subject, and complete datasets, respectively. In the complete set, the approach effectively mitigated class imbalance issues, achieving sensitivity of 83.58% and specificity of 95.42%. Multimodal fusion of EEG networks and fNIRSNET outperformed single-modality performance with the highest accuracy of 87.15% on balanced data. Overall, this study introduces an innovative fusion approach for decoding fNIRS data and illustrates its integration with established EEG networks to enhance performance.more » « less
-
This paper explores an energy-efficient resistive random access memory (RRAM) crossbar array framework for predicting epileptic seizures using the CHB-MIT electroencephalogram (EEG) dataset. RRAMs have significant potential for in-memory computing, offering a promising solution to overcome the limitations of the traditional Von Neumann architecture. By integrating a domain-specific feature extraction approach and evaluating the optimal RRAM hardware parameters using the NeuroSim+ benchmarking platform, we assess the performance of RRAM crossbars for predicting epileptic seizures. Our proposed workflow achieves accuracy levels above 80% despite the EEG data being quantized to 1-bit, highlighting the robustness and efficiency of our approach for epileptic seizure predictionmore » « less
-
Over the past decade, the machine learning security community has developed a myriad of defenses for evasion attacks. An under- studied question in that community is: for whom do these defenses defend? This work considers common approaches to defending learned systems and how security defenses result in performance inequities across different sub-populations. We outline appropriate parity metrics for analysis and begin to answer this question through empirical results of the fairness implications of machine learning security methods. We find that many methods that have been proposed can cause direct harm, like false rejection and unequal benefits from robustness training. The framework we propose for measuring defense equality can be applied to robustly trained models, preprocessing-based defenses, and rejection methods. We identify a set of datasets with a user-centered application and a reasonable computational cost suitable for case studies in measuring the equality of defenses. In our case study of speech command recognition, we show how such adversarial training and augmentation have non-equal but complex protections for social subgroups across gender, accent, and age in relation to user coverage. We present a comparison of equality between two rejection-based de- fenses: randomized smoothing and neural rejection, finding randomized smoothing more equitable due to the sampling mechanism for minority groups. This represents the first work examining the disparity in the adversarial robustness in the speech domain and the fairness evaluation of rejection-based defenses.more » « less
-
Tang, P.; Grau, D.; El Asmar, M. (Ed.)Existing automated code checking (ACC) systems require the extraction of requirements from regulatory textual documents into computer-processable rule representations. The information extraction processes in those ACC systems are based on either human interpretation, manual annotation, or predefined automated information extraction rules. Despite the high performance they showed, rule-based information extraction approaches, by nature, lack sufficient scalability—the rules typically need some level of adaptation if the characteristics of the text change. Machine learning-based methods, instead of relying on hand-crafted rules, automatically capture the underlying patterns of the existing training text and have a great capability of generalizing to a variety of texts. A more scalable, machine learning-based approach is thus needed to achieve a more robust performance across different types of codes/documents for automatically generating semantically-enriched building-code sentences for the purpose of ACC. To address this need, this paper proposes a machine learning-based approach for generating semantically-enriched building-code sentences, which are annotated syntactically and semantically, for supporting IE. For improved robustness and scalability, the proposed approach uses transfer learning strategies to train deep neural network models on both general-domain and domain-specific data. The proposed approach consists of four steps: (1) data preparation and preprocessing; (2) development of a base deep neural network model for generating semantically-enriched building-code sentences; (3) model training using transfer learning strategies; and (4) model evaluation. The proposed approach was evaluated on a corpus of sentences from the 2009 International Building Code (IBC) and the Champaign 2015 IBC Amendments. The preliminary results show that the proposed approach achieved an optimal precision of 88%, recall of 86%, and F1-measure of 87%, indicating good performance.more » « less
An official website of the United States government

