skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Benchmarking RRAM Crossbar Arrays for Epileptic Seizure Prediction
This paper explores an energy-efficient resistive random access memory (RRAM) crossbar array framework for predicting epileptic seizures using the CHB-MIT electroencephalogram (EEG) dataset. RRAMs have significant potential for in-memory computing, offering a promising solution to overcome the limitations of the traditional Von Neumann architecture. By integrating a domain-specific feature extraction approach and evaluating the optimal RRAM hardware parameters using the NeuroSim+ benchmarking platform, we assess the performance of RRAM crossbars for predicting epileptic seizures. Our proposed workflow achieves accuracy levels above 80% despite the EEG data being quantized to 1-bit, highlighting the robustness and efficiency of our approach for epileptic seizure prediction  more » « less
Award ID(s):
2153177
PAR ID:
10614804
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-8717-9
Page Range / eLocation ID:
1314 to 1318
Format(s):
Medium: X
Location:
Springfield, MA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Precise seizure identification plays a vital role in understanding cortical connectivity and informing treatment decisions. Yet, the manual diagnostic methods for epileptic seizures are both labor-intensive and highly specialized. In this study, we propose a Hyperdimensional Computing (HDC) classifier for accurate and efficient multi-type seizure classification. Despite previous seizure analysis efforts using HDC being limited to binary detection (seizure or no seizure), our work breaks new ground by utilizing HDC to classify seizures into multiple distinct types. HDC offers significant advantages, such as lower memory requirements, a reduced hardware footprint for wearable devices, and decreased computational complexity. Due to these attributes, HDC can be an alternative to traditional machine learning methods, making it a practical and efficient solution, particularly in resource-limited scenarios or applications involving wearable devices. We evaluated the proposed technique on the latest version of TUH EEG Seizure Corpus (TUSZ) dataset and the evaluation result demonstrate noteworthy performance, achieving a weighted F1 score of 94.6%. This outcome is in line with, or even exceeds, the performance achieved by the state-ofthe-art traditional machine learning methods. 
    more » « less
  2. Topological data analysis (TDA) is increasingly recognized as a promising tool in the field of neuroscience, unveiling the underlying topological patterns within brain signals. However, most TDA related methods treat brain signals as if they were static, i.e., they ignore potential non-stationarities and irregularities in the statistical properties of the signals. In this study, we develop a novel fractal dimension-based testing approach that takes into account the dynamic topological properties of brain signals. By representing EEG brain signals as a sequence of Vietoris-Rips filtrations, our approach accommodates the inherent non-stationarities and irregularities of the signals. The application of our novel fractal dimension-based testing approach in analyzing dynamic topological patterns in EEG signals during an epileptic seizure episode exposes noteworthy alterations in total persistence across 0, 1, and 2-dimensional homology. These findings imply a more intricate influence of seizures on brain signals, extending beyond mere amplitude changes. 
    more » « less
  3. Epilepsy is one of the most common neurological diseases globally, affecting around 50 million people worldwide. Fortunately, up to 70 percent of people with epilepsy could live seizure-free if properly diagnosed and treated, and a reliable technique to monitor the onset of seizures could improve the quality of life of patients who are constantly facing the fear of random seizure attacks. The scalp-based EEG test, despite being the gold standard for diagnosing epilepsy, is costly, necessitates hospitalization, demands skilled professionals for operation, and is discomforting for users. In this paper, we propose EarSD, a novel lightweight, unobtrusive, and socially acceptable ear-worn system to detect epileptic seizure onsets by measuring the physiological signals from behind the user's ears. EarSD includes an integrated custom-built sensing, computing, and communication PCB to collect and amplify the signals of interest, remove the noises caused by motion artifacts and environmental impacts, and stream the data wirelessly to the computer or mobile phone nearby, where data are uploaded to the host computer for further processing. We conducted both in-lab and in-hospital experiments with epileptic seizure patients who were hospitalized for seizure studies. The preliminary results confirm that EarSD can detect seizures with up to 95.3 percent accuracy by just using classical machine learning algorithms. 
    more » « less
  4. Abstract We present a multimodal dataset of intracranial recordings, fMRI, and eye tracking in 20 participants during movie watching. Recordings consist of single neurons, local field potential, and intracranial EEG activity acquired from depth electrodes targeting the amygdala, hippocampus, and medial frontal cortex implanted for monitoring of epileptic seizures. Participants watched an 8-min long excerpt from the video “Bang! You’re Dead” and performed a recognition memory test for movie content. 3 T fMRI activity was recorded prior to surgery in 11 of these participants while performing the same task. This NWB- and BIDS-formatted dataset includes spike times, field potential activity, behavior, eye tracking, electrode locations, demographics, and functional and structural MRI scans. For technical validation, we provide signal quality metrics, assess eye tracking quality, behavior, the tuning of cells and high-frequency broadband power field potentials to familiarity and event boundaries, and show brain-wide inter-subject correlations for fMRI. This dataset will facilitate the investigation of brain activity during movie watching, recognition memory, and the neural basis of the fMRI-BOLD signal. 
    more » « less
  5. We developed a neural network model that can account for major elements common to human focal seizures. These include the tonic-clonic transition, slow advance of clinical semiology and corresponding seizure territory expansion, widespread EEG synchronization, and slowing of the ictal rhythm as the seizure approaches termination. These were reproduced by incorporating usage-dependent exhaustion of inhibition in an adaptive neural network that receives global feedback inhibition in addition to local recurrent projections. Our model proposes mechanisms that may underline common EEG seizure onset patterns and status epilepticus, and postulates a role for synaptic plasticity in the emergence of epileptic foci. Complex patterns of seizure activity and bi-stable seizure end-points arise when stochastic noise is included. With the rapid advancement of clinical and experimental tools, we believe that this model can provide a roadmap and potentially an in silico testbed for future explorations of seizure mechanisms and clinical therapies. 
    more » « less