skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A model-based simulation framework for coupled acoustics, elastodynamics, and damage with application to nano-pulse lithotripsy
We develop a model for solid objects surrounded by a fluid that accounts for the possibility of acoustic pressures giving rise to damage on the surface of the solid. The propagation of an acoustic pressure in the fluid domain is modeled by the acoustic wave equation. On the other hand, the response of the solid is described by linear elastodynamics coupled with a gradient damage model, one that is based on a cohesive-type phase-field description of fracture. The interaction between the acoustic pressure and the deformation and damage of the solid are represented by transmission conditions at the fluid-solid interface. The resulting governing equations are discretized using a finite-element/finite-difference method that pays particular attention to the spatial and temporal scales that need to be resolved. Results from model-based simulations are provided for a benchmark problem as well as for recent experiments in nanopulse lithotripsy. A parametric study is performed to illustrate how damage develops in response to the driving force (magnitude and location of the acoustic source) as a function of the fracture resistance of the solid. The results are shown to be qualitatively consistent with experimental observations for the location and size of the damage fields on the solid surface. A study of limiting cases also suggests that both the threshold for damage and the critical fracture energy are important to consider in order to capture the transition from damage initiation to complete localization. A low-cycle fatigue model is proposed that degrades the fracture resistance of the solid as a function of accumulated tensile strain energy, and it is shown to be capable of capturing damage localization in simulations of multi-pulse nano-pulse lithotripsy.  more » « less
Award ID(s):
2132551 2132528
PAR ID:
10544972
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
International Journal of Solids and Structures
Volume:
289
Issue:
C
ISSN:
0020-7683
Page Range / eLocation ID:
112626
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The crack band model, which was shown to provide a superior computational representation of fracture of quasibrittle materials (in this journal, May 2022), still suffers from three limitations: (1) The material damage is forced to be uniform across a one-element wide band because of unrestricted strain localization instability; (2) the width of the fracture process zone is fixed as the width of a single element; and (3) cracks inclined to rectangular mesh lines are represented by a rough zig-zag damage band. Presented is a generalization that overcomes all three, by enforcing a variable multi-element width of the crack band front controlled by a material characteristic length l0. This is achieved by introducing a homogenized localization energy density that increases, after a certain threshold, as a function of an invariant of the third-order tensor of second gradient of the displacement vector, called the sprain tensorη, representing (in isotropic materials) the magnitude of its Laplacian (not expressible as a strain-gradient tensor). The continuum free energy density must be augmented by additional sprain energy Φ(l0η), which affects only the postpeak softening damage. In finite element discretization, the localization resistance is effected by applying triplets of self-equilibrated in-plane nodal forces, which follow as partial derivatives of Φ(l0η). The force triplets enforce a variable multi-element crack band width. The damage distribution across the fracture process zone is non-uniform but smoothed. The standard boundary conditions of the finite element method apply. Numerical simulations document that the crack band propagates through regular rectangular meshes with virtually no directional bias. 
    more » « less
  2. The 2023 smooth Lagrangian Crack-Band Model (slCBM), inspired by the 2020 invention of the gap test, prevented spurious damage localization during fracture growth by introducing the second gradient of the displacement field vector, named the “sprain,” as the localization limiter. The key idea was that, in the finite element implementation, the displacement vector and its gradient should be treated as independent fields with the lowest ( C 0 ) continuity, constrained by a second-order Lagrange multiplier tensor. Coupled with a realistic constitutive law for triaxial softening damage, such as microplane model M7, the known limitations of the classical Crack Band Model were eliminated. Here, we show that the slCBM closely reproduces the size effect revealed by the gap test at various crack-parallel stresses. To describe it, we present an approximate corrective formula, although a strong loading-path dependence limits its applicability. Except for the rare case of zero crack-parallel stresses, the fracture predictions of the line crack models (linear elastic fracture mechanics, phase-field, extended finite element method (XFEM), cohesive crack models) can be as much as 100% in error. We argue that the localization limiter concept must be extended by including the resistance to material rotation gradients. We also show that, without this resistance, the existing strain-gradient damage theories may predict a wrong fracture pattern and have, for Mode II and III fractures, a load capacity error as much as 55%. Finally, we argue that the crack-parallel stress effect must occur in all materials, ranging from concrete to atomistically sharp cracks in crystals. 
    more » « less
  3. We present a stochastic bulk damage model for rock fracture. The decomposition of strain or stress tensor to its negative and positive parts is often used to drive damage and evaluate the effective stress tensor. However, they typically fail to correctly model rock fracture in compression. We propose a damage force model based on the Mohr-Coulomb failure criterion and an effective stress relation that remedy this problem. An evolution equation specifies the rate at which damage tends to its quasi-static limit. The relaxation time of the model introduces an intrinsic length scale for dynamic fracture and addresses the mesh sensitivity problem of earlier damage models. The ordinary differential form of the damage equation makes this remedy quite simple and enables capturing the loading rate sensitivity of strain-stress response. The asynchronous Spacetime Discontinuous Galerkin (aSDG) method is used for macroscopic simulations. To study the effect of rock inhomogeneity, the Karhunen-Loeve method is used to realize random fields for rock cohesion. It is shown that inhomogeneity greatly differentiates fracture patterns from those of a homogeneous rock, including the location of zones with maximum damage. Moreover, as the correlation length of the random field decreases, fracture patterns resemble angled-cracks observed in compressive rock fracture. 
    more » « less
  4. Pipe-type cable systems, including high-pressure fluid-filled (HPFF) and high-pressure gas-filled cables, are widely used for underground high-voltage transmission. These systems consist of insulated conductor cables within steel pipes, filled with pressurized fluids or gases for insulation and cooling. Despite their reliability, faults can occur due to insulation degradation, thermal expansion, and environmental factors. As many circuits exceed their 40-year design life, efficient fault localization becomes crucial. Fault location involves prelocation and pinpointing. Therefore, a novel pinpointing approach for pipe-type cable systems is proposed, utilizing accelerometers mounted on a steel pipe to capture fault-induced acoustic signals and employing the time difference of arrival method to accurately pinpoint the location of the fault. The experimental investigations utilized a scaled-down HPFF pipe-type cable system setup, featuring a carbon steel pipe, high-frequency accelerometers, and both mechanical and capacitive discharge methods for generating acoustic pulses. The tests evaluated the propagation velocity, attenuation, and pinpointing accuracy with the pipe in various embedment conditions. The experimental results demonstrated accurate fault pinpointing in the centimeter range, even when the pipe was fully embedded, with the acoustic pulse velocities aligning closely with the theoretical values. These experimental investigation findings highlight the potential of this novel acoustic pinpointing technique to improve fault localization in underground systems, enhance grid reliability, and reduce outage duration. Further research is recommended to validate this approach in full-scale systems. 
    more » « less
  5. Traditional structural damage detection methods in aerospace applications face challenges in accuracy and sensitivity, often necessitating multiple sensors to evaluate various measurement paths between the reference and defective states. However, the recently developed topological acoustic (TA) sensing technique can capture shifts in the geometric phase of an acoustic field, enabling the detection of even minor perturbations in the supporting medium. In this study, a diagnostic imaging method for damage detection in plate structures based on the TA sensing technique is presented. The method extracts the geometric phase shift index (GPS-I) from the Lamb wave response signals to indicate the location of the damage. Using Abaqus/CAE, a finite element model of the plate was established to simulate the Lamb wave response signals, which were then used to validate the feasibility of the proposed method. The results indicate that this technique enables rapid and precise identification of damage and its location within the plate structure, requiring response signals from only a few points on the damaged plate, and it is reference-free. 
    more » « less