skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Stochastic Bulk Damage Model Based on Mohr-Coulomb Failure Criterion for Dynamic Rock Fracture
We present a stochastic bulk damage model for rock fracture. The decomposition of strain or stress tensor to its negative and positive parts is often used to drive damage and evaluate the effective stress tensor. However, they typically fail to correctly model rock fracture in compression. We propose a damage force model based on the Mohr-Coulomb failure criterion and an effective stress relation that remedy this problem. An evolution equation specifies the rate at which damage tends to its quasi-static limit. The relaxation time of the model introduces an intrinsic length scale for dynamic fracture and addresses the mesh sensitivity problem of earlier damage models. The ordinary differential form of the damage equation makes this remedy quite simple and enables capturing the loading rate sensitivity of strain-stress response. The asynchronous Spacetime Discontinuous Galerkin (aSDG) method is used for macroscopic simulations. To study the effect of rock inhomogeneity, the Karhunen-Loeve method is used to realize random fields for rock cohesion. It is shown that inhomogeneity greatly differentiates fracture patterns from those of a homogeneous rock, including the location of zones with maximum damage. Moreover, as the correlation length of the random field decreases, fracture patterns resemble angled-cracks observed in compressive rock fracture.  more » « less
Award ID(s):
1725544 1725555
PAR ID:
10113630
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Applied Sciences
Volume:
9
Issue:
5
ISSN:
2076-3417
Page Range / eLocation ID:
830
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fracture patterns experienced under a dynamic uniaxial compressive load are highly sensitive to rock microstructural defects due to its brittleness and the absence of macroscopic stress concentration points. We propose two different approaches for modeling rock microstructural defects and inhomogeneity. In the explicit realization approach, microcracks with certain statistics are incorporated in the computational domain. In the implicit realization approach, fracture strength values are sampled using a Weibull probability distribution. We use the Mohr-Coulomb failure criterion to define an effective stress in the context of an interfacial damage model. This model predicts crack propagation at angles ±ɸch = ±(45 − ɸ/2) relative to the direction of compressive load, where ɸ is the friction angle. By using appropriate models for fracture strength anisotropy, we demonstrate the interaction of rock weakest plane and ɸch. Numerical results demonstrate the greater effect of strength anisotropy on fracture pattern when an explicit approach is employed. In addition, the density of fractures increases as the angle of the weakest planes approaches ±ɸch. The fracture simulations are performed by an h-adaptive asynchronous spacetime discontinuous Galerkin (aSDG) method that can accommodate crack propagation in any directions. 
    more » « less
  2. Fracture in rock as a heterogeneous brittle material, having significant inherent randomness, requires including probabilistic considerations at different scales. Crack growth in rocks is generally associated with complex features such as crack path oscillations, microcrack and crack branching events. Two methods will be presented to address rock inhomogeneity and anisotropy. First, microcracks are explicitly realized in a domain based on specific statistics of crack length and location. Second, a statistical model is used to implicitly represent an inhomogeneous field for fracture strength. Both approaches can be used for rocks in which the natural fractures are oriented in a specific angle, i.e. an aspect for modeling bedding planes in sedimentary rocks. 
    more » « less
  3. Abstract The crack band model, which was shown to provide a superior computational representation of fracture of quasibrittle materials (in this journal, May 2022), still suffers from three limitations: (1) The material damage is forced to be uniform across a one-element wide band because of unrestricted strain localization instability; (2) the width of the fracture process zone is fixed as the width of a single element; and (3) cracks inclined to rectangular mesh lines are represented by a rough zig-zag damage band. Presented is a generalization that overcomes all three, by enforcing a variable multi-element width of the crack band front controlled by a material characteristic length l0. This is achieved by introducing a homogenized localization energy density that increases, after a certain threshold, as a function of an invariant of the third-order tensor of second gradient of the displacement vector, called the sprain tensorη, representing (in isotropic materials) the magnitude of its Laplacian (not expressible as a strain-gradient tensor). The continuum free energy density must be augmented by additional sprain energy Φ(l0η), which affects only the postpeak softening damage. In finite element discretization, the localization resistance is effected by applying triplets of self-equilibrated in-plane nodal forces, which follow as partial derivatives of Φ(l0η). The force triplets enforce a variable multi-element crack band width. The damage distribution across the fracture process zone is non-uniform but smoothed. The standard boundary conditions of the finite element method apply. Numerical simulations document that the crack band propagates through regular rectangular meshes with virtually no directional bias. 
    more » « less
  4. The microstructural design has an essential effect on the fracture response of brittle materials. We present a stochastic bulk damage formulation to model dynamic brittle fracture. This model is compared with a similar interfacial model for homogeneous and heterogeneous materials. The damage models are rate-dependent, and the corresponding damage evolution includes delay effects. The delay effect provides mesh objectivity with much less computational efforts. A stochastic field is defined for material cohesion and fracture strength to involve microstructure effects in the proposed formulations. The statistical fields are constructed through the Karhunen-Loeve (KL) method. An advanced asynchronous Spacetime Discontinuous Galerkin (aSDG) method is used to discretize the final system of coupled equations. Application of the presented formulation is shown through dynamic fracture simulation of rock under a uniaxial compressive load. The final results show that a stochastic bulk damage model produces more realistic results in comparison with a homogenizes model. 
    more » « less
  5. A 2D plane strain extended finite element method (XFEM) model was developed to simulate three-point bending fracture toughness tests for human bone conducted in hydrated and dehydrated conditions. Bone microstructures and crack paths observed by micro-CT imaging were simulated using an XFEM damage model. Critical damage strains for the osteons, matrix, and cement lines were deduced for both hydrated and dehydrated conditions and it was found that dehydration decreases the critical damage strains by about 50%. Subsequent parametric studies using the various microstructural models were performed to understand the impact of individual critical damage strain variations on the fracture behavior. The study revealed the significant impact of the cement line critical damage strains on the crack paths and fracture toughness during the early stages of crack growth. Furthermore, a significant sensitivity of crack growth resistance and crack paths on critical strain values of the cement lines was found to exist for the hydrated environments where a small change in critical strain values of the cement lines can alter the crack path to give a significant reduction in fracture resistance. In contrast, in the dehydrated state where toughness is low, the sensitivity to changes in critical strain values of the cement lines is low. Overall, our XFEM model was able to provide new insights into how dehydration affects the micromechanisms of fracture in bone and this approach could be further extended to study the effects of aging, disease, and medical therapies on bone fracture. 
    more » « less