We develop a model to describe the mixed valence regime in magic-angle twisted bilayer graphene (MATBG) using the recently developed heavy-fermion framework. By employing the large-N slave-boson approach, we derive the self-consistent mean-field equations and solve them numerically. We find that the SU(8) local flat-band electron symmetry constraint moiré system exhibits mixed valence properties that are different from conventional heavy-fermion systems. We find the solutions describing the physics at the filling near the Mott insulator regime in the limit of strong Coulomb interactions between the flat-band fermions. Our model can provide additional insight into the possible microscopic origin of unconventional superconductivity in MATBG.
more »
« less
Migdal–Eliashberg superconductivity in a Kondo lattice
We apply the Migdal–Eliashberg theory of superconductivity to heavy-fermion and mixed valence materials. Specifically, we extend the Anderson lattice model to a case when there exists a strong coupling between itinerant electrons and lattice vibrations. Using the saddle-point approximation, we derive a set of coupled nonlinear equations which describe competition between the crossover to a heavy-fermion or mixed-valence regimes and conventional superconductivity. We find that superconductivity at strong coupling emerges on par with the development of the many-body coherence in a Kondo lattice. Superconductivity is gradually suppressed with the onset of the Kondo screening and for strong electron-phonon coupling the Kondo screening exhibits a characteristic re-entrant behavior. Even though for both weak and strong coupling limits the suppression of superconductivity is weaker in the mixed-valence regime compared to the local moment one, superconducting critical temperature still remains nonzero. In the weak coupling limit the onset of the many body coherence develops gradually, in the strong coupling limit it emerges abruptly in the mixed valence regime while in the local moment regime the f-electrons remain effectively decoupled from the conduction electrons. Possibility of experimental realization of these effects in Ce-based compounds is also discussed.
more »
« less
- Award ID(s):
- 2002795
- PAR ID:
- 10545036
- Publisher / Repository:
- IOP
- Date Published:
- Journal Name:
- Journal of Physics: Condensed Matter
- Volume:
- 36
- Issue:
- 32
- ISSN:
- 0953-8984
- Page Range / eLocation ID:
- 325602
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Kondo lattice is one of the classic examples of strongly correlated electronic systems. We conduct a controlled study of the Kondo lattice in one dimension, highlighting the role of excitations created by the composite fermion operator. Using time-dependent matrix product state methods, we compute various correlation functions and contrast them with both large-N mean-field theory and the strong-coupling expansion. We show that the composite fermion operator creates long-lived, charge-e and spin-1/2 excitations, which cover the low-lying single-particle excitation spectrum of the system. Furthermore, spin excitations can be thought to be composed of such fractionalized quasiparticles with a residual interaction which tend to disappear at weak Kondo coupling. Published by the American Physical Society2024more » « less
-
Novel electronic phenomena frequently form in heavy-fermions because of the mutual localized and itinerant nature of f -electrons. On the magnetically ordered side of the heavy-fermion phase diagram, f -moments are expected to be localized and decoupled from the Fermi surface. It remains ambiguous whether Kondo lattice can develop inside the magnetically ordered phase. Using spectroscopic imaging with scanning tunneling microscope, complemented by neutron scattering, x-ray absorption spectroscopy, and dynamical mean field theory, we probe the electronic states in antiferromagnetic USb 2 . We visualize a large gap in the antiferromagnetic phase within which Kondo hybridization develops below ~80 K. Our calculations indicate the antiferromagnetism and Kondo lattice to reside predominantly on different f -orbitals, promoting orbital selectivity as a new conception into how these phenomena coexist in heavy-fermions. Finally, at 45 K, we find a novel first order–like transition through abrupt emergence of nontrivial 5 f -electronic states that may resemble the “hidden-order” phase of URu 2 Si 2 .more » « less
-
null (Ed.)The temperature-dependent evolution of the Kondo lattice is a long-standing topic of theoretical and experimental investigation and yet it lacks a truly microscopic description of the relation of the basic f-c hybridization processes to the fundamental temperature scales of Kondo screening and Fermi-liquid lattice coherence. Here, the temperature dependence of f-c hybridized band dispersions and Fermi-energy f spectral weight in the Kondo lattice system CeCoIn 5 is investigated using f-resonant angle-resolved photoemission spectroscopy (ARPES) with sufficient detail to allow direct comparison to first-principles dynamical mean-field theory (DMFT) calculations containing full realism of crystalline electric-field states. The ARPES results, for two orthogonal (001) and (100) cleaved surfaces and three different f-c hybridization configurations, with additional microscopic insight provided by DMFT, reveal f participation in the Fermi surface at temperatures much higher than the lattice coherence temperature, T * ≈ 45 K, commonly believed to be the onset for such behavior. The DMFT results show the role of crystalline electric-field (CEF) splittings in this behavior and a T-dependent CEF degeneracy crossover below T * is specifically highlighted. A recent ARPES report of low T Luttinger theorem failure for CeCoIn 5 is shown to be unjustified by current ARPES data and is not found in the theory.more » « less
-
Lisesivdin, Sefer Bora (Ed.)In this work, a new canonical transformation for the Anderson lattice Hamiltonian with f–f electron coupling was developed, which was further used to identify a new Kondo lattice Hamiltonian. Different from the single impurity Kondo effect, the resulted new Kondo lattice Hamiltonian only includes the spin-flip scattering processes between conduction electrons and f-electrons, while the normal process of non-spin-flip scattering is absent in this Hamiltonian, under the second order approximation. The new Kondo lattice Hamiltonian may be used to study some anomalous physical properties in some Kondo lattice intermetallic compounds.more » « less
An official website of the United States government

