skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The MeerKAT Fornax Survey: III. Ram-pressure stripping of the tidally interacting galaxy NGC 1427A in the Fornax cluster
We present MeerKAT Fornax Survey H Iobservations of NGC 1427A, a blue irregular galaxy with a stellar mass of ∼2 × 109Mlocated near the centre of the Fornax galaxy cluster. Thanks to the excellent resolution (1–6 kpc spatially, 1.4 km s−1in velocity) and H Icolumn density sensitivity (∼4 × 1019to ∼1018cm−2depending on resolution), our data deliver new insights on the long-debated interaction of this galaxy with the cluster environment. We confirm the presence of a broad, one-sided, starless H Itail stretching from the outer regions of the stellar body and pointing away from the cluster centre. We find the tail to have 50% more H I(4 × 108M) and to be 3 times longer (70 kpc) than in previous observations. In fact, we detect scattered H Iclouds out to 300 kpc from the galaxy in the direction of the tail – possibly the most ancient remnant of the passage of NGC 1427A through the intracluster medium of Fornax. Both the velocity gradient along the H Itail and the peculiar kinematics of H Iin the outer region of the stellar body are consistent with the effect of ram pressure given the line-of-sight motion of the galaxy within the cluster. However, several properties cannot be explained solely by ram pressure and suggest an ongoing tidal interaction. This includes: the close match between dense H Iand stars within the disturbed stellar body; the abundant kinematically anomalous H I; and the inversion of the H Ivelocity gradient near the base of the H Itail. We rule out an interaction with the cluster tidal field, and conclude that NGC 1427A is the result of a high-speed galaxy encounter or of a merger started at least 300 Myr ago, where ram pressure shapes the distribution and kinematics of the H Iin the perturbed outer stellar body and in the tidal tails.  more » « less
Award ID(s):
2108470
PAR ID:
10545114
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
EDP Sciences
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
690
ISSN:
0004-6361
Page Range / eLocation ID:
A4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The MeerKAT Fornax Survey maps the distribution and kinematics of atomic neutral hydrogen gas (H  I ) in the nearby Fornax galaxy cluster using the MeerKAT telescope. The 12 deg 2 survey footprint covers the central region of the cluster out to ∼ R vir and stretches south-west out to ∼2 R vir to include the NGC 1316 galaxy group. The H  I column density sensitivity (3 σ over 25 km s −1 ) ranges from 5 × 10 19 cm −2 at a resolution of ∼10″ (∼1 kpc at the 20 Mpc distance of Fornax) down to ∼10 18 cm −2 at ∼1′ (∼6 kpc), and slightly below this level at the lowest resolution of ∼100″ (∼10 kpc). The H  I mass sensitivity (3 σ over 50 km s −1 ) is 6 × 10 5 M ⊙ . The H  I velocity resolution is 1.4 km s −1 . In this paper, we describe the survey design and H  I data processing, and we present a sample of six galaxies with long, one-sided, starless H  I tails (only one of which was previously known) radially oriented within the cluster and with measurable internal velocity gradients. We argue that the joint properties of the H  I tails represent the first unambiguous evidence of ram pressure shaping the distribution of H  I in the Fornax cluster. The disturbed optical morphology of all host galaxies supports the idea that the tails consist of H  I that was initially pulled out of the galaxies’ stellar body by tidal forces. Ram pressure was then able to further displace the weakly bound H  I and give the tails their current direction, length, and velocity gradient. 
    more » « less
  2. We present MeerKAT H Iobservations of ESO 137-001, a quintessential jellyfish galaxy with long multi-phase tails formed due to the interaction with the intra-cluster medium of its host galaxy cluster, ACO 3627. Our observations reveal the presence of H Iin both the disc and outer regions of the galaxy for the first time, with a total H Imass of (3.5 ± 0.4)×108M. ESO 137-001 is at an advanced stage of gas stripping; it is extremely H Ideficient and seems to have lost 90% of its initial H Imass; about 2/3 of the surviving H Iis found at larger radius than expected for a normal H Idisc and forms ∼40 kpc tail coincident with the tail detected at other wavelengths. Only ∼10% of the surviving H Iis still found within the stellar disc, consistent with the expectation of an outside-in truncation due to ram pressure. Similarly to other jellyfish galaxies, ESO137-001 has a high star formation rate for the low amount of H Idetected. We measure an H Idepletion time of 0.29 Gyr. However, when taking into account the total gas (H I+ H2) content, the depletion time is consistent with typical values measured in nearby spiral galaxies. This suggests that ESO 137-001 is at its current stage of ram pressure interaction characterised by an efficient H Istripping, rather than an enhanced conversion of H Ito H2, which was recently observed in some other jellyfish galaxies. 
    more » « less
  3. Abstract The presence of dense, neutral hydrogen clouds in the hot, diffuse intragroup and intracluster (IC) medium is an important clue to the physical processes controlling the survival of cold gas and sheds light on cosmological baryon flows in massive halos. Advances in numerical modeling and observational surveys mean that theory and observational comparisons are now possible. In this paper, we use the high-resolution TNG50 cosmological simulation to study the Hidistribution in seven halos with masses similar to the Fornax galaxy cluster. Adopting observational sensitivities similar to the MeerKAT Fornax Survey (MFS), an ongoing Hisurvey that will probe to column densities of 1018cm−2, we find that Fornax-like TNG50 halos have an extended distribution of neutral hydrogen clouds. Within 1Rvir, we predict the MFS will observe a total Hicovering fraction of ∼12% (mean value) for 10 kpc pixels and 6% for 2 kpc pixels. If we restrict this to gas more than 10 half-mass radii from galaxies, the mean values only decrease mildly, to 10% (4%) for 10 (2) kpc pixels (albeit with significant halo-to-halo spread). Although there are large amounts of Hioutside of galaxies, the gas seems to be associated with satellites, judging both by the visual inspection of projections and by comparison of the line of sight velocities of galaxies and IC Hi. 
    more » « less
  4. Ram-pressure stripping of the spiral galaxy ESO 137−001 within the highly dynamical intracluster medium (ICM) of the Norma cluster lead to spectacular extraplanar CO, optical, Hα, UV, and X-ray emission. The Hαand X-ray tails extend up to 80 kpc from the galactic disk. We present dynamical simulations of the ram-pressure stripping event, and investigate the physics of the stripped gas and its ability to form stars. We also use these simulations to predict H Imaps and to constrain the orbit of ESO 137−001 within the Norma cluster. Special care was taken for the stripping of the diffuse gas. In a new approach, we analytically estimate the mixing between the intracluster and interstellar media. Different temporal ram-pressure profiles and the ICM-ISM mixing rate were tested. Three preferred models show most of the observed multiwavelength characteristics of ESO 137−001. Our highest-ranked model best reproduces the CO emission distribution, velocity for distances of ≲20 kpc from the galactic disk, and the available near-ultraviolet (NUV) observations. The second and third preferred models best reproduce the available X-ray and Hαobservations of the gas tail, including the Hαvelocity field. The angle between the direction of the galaxy’s motion and the plane of the galactic disk is between 60° and 75°. Ram-pressure stripping thus occurs more face-on. The existence of a two-tailed structure is a common feature in our models, and is due to the combined action of ram pressure and rotation together with the projection of the galaxy on the sky. Our modeling of the Hαemission caused by ionization through thermal conduction is consistent with observations. We predict the H Iemission distributions for the different models. Based on the 3D velocity vector derived from our dynamical model, we derive a galaxy orbit, which is close to unbound. We argue that ram pressure is enhanced by a factor of ∼2.5 compared to that expected for an orbit in an unperturbed spherical ICM. This increase can be obtained in two ways: an increase in the ICM density or a moving ICM opposite to the motion of the galaxy within the cluster. In a strongly perturbed galaxy cluster, such as the Norma cluster, with an off-center ICM distribution, the two possibilities are probable and plausible. 
    more » « less
  5. Abstract We discuss five blue stellar systems in the direction of the Virgo cluster, analogous to the enigmatic object SECCO 1 (AGC 226067). These objects were identified based on their optical and UV morphology and followed up with Hiobservations with the Very Large Array (and Green Bank Telescope), Multi Unit Spectroscopic Explorer (on the Very Large Telescope) optical spectroscopy, and Hubble Space Telescope imaging. These new data indicate that one system is a distant group of galaxies. The remaining four are extremely low mass (M*∼ 105M), are dominated by young blue stars, have highly irregular and clumpy morphologies, are only a few kiloparsecs across, yet host an abundance of metal-rich, 12 + log ( O / H ) > 8.2 , Hiiregions. These high metallicities indicate that these stellar systems formed from gas stripped from much more massive galaxies. Despite the young age of their stellar populations, only one system is detected in Hi, while the remaining three have minimal (if any) gas reservoirs. Furthermore, two systems are surprisingly isolated and have no plausible parent galaxy within ∼30′ (∼140 kpc). Although tidal stripping cannot be conclusively excluded as the formation mechanism of these objects, ram pressure stripping more naturally explains their properties, in particular their isolation, owing to the higher velocities, relative to the parent system, that can be achieved. Therefore, we posit that most of these systems formed from ram-pressure-stripped gas removed from new infalling cluster members and survived in the intracluster medium long enough to become separated from their parent galaxies by hundreds of kiloparsecs and that they thus represent a new type of stellar system. 
    more » « less