skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigating 3D microbial community dynamics of the rhizosphere using quantitative phase and fluorescence microscopy
Microbial interactions in the rhizosphere contribute to soil health, making understanding these interactions crucial for sustainable agriculture and ecosystem management. Yet it is difficult to understand what we cannot see; among the limitations in rhizosphere imaging are challenges associated with rapidly and noninvasively imaging microbial cells over field depths relevant to plant roots. Here, we present a bimodal imaging technique called complex-field and fluorescence microscopy using the aperture scanning technique (CFAST) that addresses these limitations. CFAST integrates quantitative phase imaging using synthetic aperture imaging based on Kramers–Kronig relations, along with three-dimensional (3D) fluorescence imaging using an engineered point spread function. We showcase CFAST’s practicality and versatility in two ways. First, by harnessing its depth of field of more than 100 μm, we significantly reduce the number of captures required for 3D imaging of plant roots and bacteria in the rhizoplane. This minimizes potential photobleaching and phototoxicity issues. Second, by leveraging CFAST’s phase sensitivity and fluorescence specificity, we track microbial growth, competition, and gene expression at early stages of colony biofilm development. Specifically, we resolve bacterial growth dynamics of mixed populations without the need for genetically labeling environmental isolates. Moreover, we find that gene expression related to phosphorus sensing and antibiotic production varies spatiotemporally within microbial populations that are surface attached and appears distinct from their expression in planktonic cultures. Together, CFAST’s attributes overcome commercial imaging platform limitations and enable insights to be gained into microbial behavioral dynamics in experimental systems of relevance to the rhizosphere.  more » « less
Award ID(s):
2209379
PAR ID:
10545144
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
121
Issue:
33
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rhizosphere microbiome exerts a significant role in plant health, influencing nutrient availability, disease resistance, and overall plant growth. Establishing a robust and efficient nodulation process is essential for optimal nitrogen fixation in legumes like soybeans. Different soybean genotypes exhibit variations in their rhizosphere microbiome, potentially impacting nitrogen fixation through nodulation. However, a detailed understanding of how specific soybean genotypes influence rhizosphere microbial communities and nodulation patterns remains limited. Our study aims to investigate the relationship between rhizosphere microbial abundance and plant growth in four soybean genotypes. We evaluated plant growth parameters, including biomass, leaf area, and stomatal conductance, and identified significant genotypic differences in nodulation. Specifically, genotypes PI 458505 and PI 603490 exhibited high levels of nodulation, while PI 605839A and PI 548400 displayed low nodulation. 16S rRNA gene amplicon sequencing revealed diverse bacterial communities in the rhizosphere, with Proteobacteria as the dominant phylum. High-nodulation genotypes harbored more diverse microbial communities enriched with Actinobacteria and Acidobacteriota, while low-nodulation genotypes showed higher abundances of Firmicutes and Planctomycetota. Alpha and beta diversity analyses confirmed distinct microbial community structures between high- and low-nodulation groups. Our findings suggest that the rhizosphere microbiome significantly influences soybean growth and nodulation, highlighting the potential for genotype-driven strategies to enhance plant-microbe interactions and improve soybean productivity. 
    more » « less
  2. Summary Iron (Fe) is crucial for metabolic functions of living organisms. Plants access occluded Fe through interactions with rhizosphere microorganisms and symbionts. Yet, the interplay between Fe addition and plant–mycorrhizal interactions, especially the molecular mechanisms underlying mycorrhiza‐assisted Fe processing in plants, remains largely unexplored.We conducted mesocosms inPinusplants inoculated with different ectomycorrhizal fungi (EMF)Suillusspecies under conditions with and without Fe coatings. Meta‐transcriptomic, biogeochemical, and X‐ray fluorescence imaging analyses were applied to investigate early‐stage mycorrhizal roots.While Fe addition promotedPinusgrowth, it concurrently reduced mycorrhiza formation rate, symbiosis‐related metabolites in plant roots, and aboveground plant carbon and macronutrient content. This suggested potential trade‐offs between Fe‐enhanced plant growth and symbiotic performance. However, the extent of this trade‐off may depend on interactions between host plants and EMF species. Interestingly, dual EMF species were more effective at facilitating plant Fe uptake by inducing diverse Fe‐related functions than single‐EMF species. This subsequently triggered various Fe‐dependent physiological and biochemical processes inPinusroots, significantly contributing toPinusgrowth. However, this resulted in a greater carbon allocation to roots, relatively reducing the aboveground plant carbon content.Our study offers critical insights into how EMF communities rebalance benefits of Fe‐induced effects on symbiotic partners. 
    more » « less
  3. Glass, Jennifer B. (Ed.)
    ABSTRACT On the roots of wetland plants such as rice, Fe(II) oxidation forms Fe(III) oxyhydroxide-rich plaques that modulate plant nutrient and metal uptake. The microbial roles in catalyzing this oxidation have been debated and it is unclear if these iron-oxidizers mediate other important biogeochemical and plant interactions. To investigate this, we studied the microbial communities, metagenomes, and geochemistry of iron plaque on field-grown rice, plus the surrounding rhizosphere and bulk soil. Plaque iron content (per mass root) increased over the growing season, showing continuous deposition. Analysis of 16S rRNA genes showed abundant Fe(II)-oxidizing and Fe(III)-reducing bacteria (FeOB and FeRB) in plaque, rhizosphere, and bulk soil. FeOB were enriched in relative abundance in plaque, suggesting FeOB affinity for the root surface. Gallionellaceae FeOBSideroxydanswere enriched during vegetative and early reproductive rice growth stages, while aGallionellawas enriched during reproduction through grain maturity, suggesting distinct FeOB niches over the rice life cycle. FeRBAnaeromyxobacterandGeobacterincreased in plaque later, during reproduction and grain ripening, corresponding to increased plaque iron. Metagenome-assembled genomes revealed that Gallionellaceae may grow mixotrophically using both Fe(II) and organics. TheSideroxydansare facultative, able to use non-Fe substrates, which may allow colonization of rice roots early in the season. FeOB genomes suggest adaptations for interacting with plants, including colonization, plant immunity defense, utilization of plant organics, and nitrogen fixation. Taken together, our results strongly suggest that rhizoplane and rhizosphere FeOB can specifically associate with rice roots, catalyzing iron plaque formation, with the potential to contribute to plant growth. IMPORTANCEIn waterlogged soils, iron plaque forms a reactive barrier between the root and soil, collecting phosphate and metals such as arsenic and cadmium. It is well established that iron-reducing bacteria solubilize iron, releasing these associated elements. In contrast, microbial roles in plaque formation have not been clear. Here, we show that there is a substantial population of iron oxidizers in plaque, and furthermore, that these organisms (SideroxydansandGallionella) are distinguished by genes for plant colonization and nutrient fixation. Our results suggest that iron-oxidizing and iron-reducing bacteria form and remodel iron plaque, making it a dynamic system that represents both a temporary sink for elements (P, As, Cd, C, etc.) as well as a source. In contrast to abiotic iron oxidation, microbial iron oxidation results in coupled Fe-C-N cycling, as well as microbe-microbe and microbe-plant ecological interactions that need to be considered in soil biogeochemistry, ecosystem dynamics, and crop management. 
    more » « less
  4. Anderton, Christopher R. (Ed.)
    The rhizosphere, the zone of soil surrounding plant roots, is a hot spot for microbial activity, hosting bacteria capable of promoting plant growth in ways like increasing nutrient availability or fighting plant pathogens. This microbial system is highly diverse and most bacteria are unculturable, so to identify specific bacteria associated with plant growth, we used culture-independent community DNA sequencing combined with machine learning techniques. 
    more » « less
  5. Abstract The rhizosphere microbiome influences many aspects of plant fitness, including production of secondary compounds and defence against insect herbivores. Plants also modulate the composition of the microbial community in the rhizosphere via secretion of root exudates. We tested both the effect of the rhizosphere microbiome on plant traits, and host plant effects on rhizosphere microbes using recombinant inbred lines (RILs) ofBrassica rapathat differ in production of glucosinolates (GLS), secondary metabolites that contribute to defence against insect herbivores. First, we investigated the effect of genetic variation in GLS production on the composition of the rhizosphere microbiome. Using a Bayesian Dirichlet‐multinomial regression model (DMBVS), we identified both negative and positive associations between bacteria from six genera and the concentration of five GLS compounds produced in plant roots. Additionally, we tested the effects of microbial inoculation (an intact vs. disrupted soil microbiome) on GLS production and insect damage in these RILs. We found a significant microbial treatment × genotype interaction, in which total GLS was higher in the intact relative to the disrupted microbiome treatment in some RILs. However, despite differences in GLS production between microbial treatments, we observed no difference in insect damage between treatments. Together, these results provide evidence for a full feedback cycle of plant–microbe interactions mediated by GLS; that is, GLS compounds produced by the host plant “feed‐down” to influence rhizosphere microbial community and rhizosphere microbes “feed‐up” to influence GLS production. 
    more » « less