skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Understanding disorder in monolayer graphene devices with gate-defined superlattices
Abstract Engineering superlattices (SLs)—which are spatially periodic potential landscapes for electrons—is an emerging approach for the realization of exotic properties, including superconductivity and correlated insulators, in two-dimensional materials. While moiré SL engineering has been a popular approach, nanopatterning is an attractive alternative offering control over the pattern and wavelength of the SL. However, the disorder arising in the system due to imperfect nanopatterning is seldom studied. Here, by creating a square lattice of nanoholes in the SiO2dielectric layer using nanolithography, we study the SL potential and the disorder formed in hBN-graphene-hBN heterostructures. Specifically, we observe that while electrical transport shows distinct SL satellite peaks, the disorder of the device is significantly higher than graphene devices without any SL. We use finite-element simulations combined with a resistor network model to calculate the effects of this disorder on the transport properties of graphene. We consider three types of disorder: nanohole size variations, adjacent nanohole mergers, and nanohole vacancies. Comparing our experimental results with the model, we find that the disorder primarily originates from nanohole size variations rather than nanohole mergers in square SLs. We further confirm the validity of our model by comparing the results with quantum transport simulations. Our findings highlight the applicability of our simple framework to predict and engineer disorder in patterned SLs, specifically correlating variations in the resultant SL patterns to the observed disorder. Our combined experimental and theoretical results could serve as a valuable guide for optimizing nanofabrication processes to engineer disorder in nanopatterned SLs.  more » « less
Award ID(s):
2011839 2236997
PAR ID:
10545240
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP Science
Date Published:
Journal Name:
Nanotechnology
Volume:
35
Issue:
49
ISSN:
0957-4484
Page Range / eLocation ID:
495701
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It was recently argued that Bernal stacked bilayer graphene (BLG) exposed to a two-dimensional superlattice (SL) potential exhibits a variety of intriguing behaviors [Ghorashi et al., Phys. Rev. Lett. 130, 196201 (2023)]. Chief among them is the appearance of flat Chern bands that are favorable to the appearance of fractional Chern insulator states. Here, we explore the application of spatially periodic out-of-plane orbital magnetic fields to the model of Ghorashi et al. to find additional means of inducing flat Chern bands. We focus on fields that vary on length scales much larger than the atomic spacing in BLG, generating what we refer to as magnetic SLs. The magnetic SLs we investigate either introduce no net magnetic flux to the SL unit cell or a single quantum of flux. We find that magnetic SLs acting on their own can induce topological flat bands, but richer behavior, such as the appearance of flat and generic bands with high Chern numbers, can be observed when the magnetic SLs act in conjunction with commensurate electric SLs. Finally, we propose a method of generating unit-flux-quantum magnetic SLs along with concomitant electric SLs. The magnetic SL is generated by periodic arrays of flux vortices originating from type II superconductors, while the electric SL arises due to a magnetic SL-induced charge density on the surface of a magnetoelectric material. Tuning the vortex lattice and the magnetoelectric coupling permits control of both SLs, and we study their effects on the band structure of BLG. 
    more » « less
  2. Abstract The efficiency of nanoparticle (NP) solar cells has grown impressively in recent years, exceeding 16%. However, the carrier mobility in NP solar cells, and in other optoelectronic applications remains low, thus critically limiting their performance. Therefore, carrier transport in NP solids needs to be better understood to further improve the overall efficiency of NP solar cell technology. However, it is technically challenging to simulate experimental scale samples, as physical processes from atomic to mesoscopic scales all crucially impact transport. To rise to this challenge, here we report the development of TRIDENS: theTransportinDefectedNanoparticleSolids Simulator, that adds three more hierarchical layers to our previously developed HINTS code for nanoparticle solar cells. In TRIDENS, we first introduced planar defects, such as twin planes and grain boundaries into individual NP SLs superlattices (SLs) that comprised the order of 103NPs. Then we used HINTS to simulate the transport across tens of thousands of defected NP SLs, and constructed the distribution of the NP SL mobilities with planar defects. Second, the defected NP SLs were assembled into a resistor network with more than 104NP SLs, thus representing about 107individual NPs. Finally, the TRIDENS results were analyzed by finite size scaling to explore whether the percolation transition, separating the phase where the low mobility defected NP SLs percolate, from the phase where the high mobility undefected NP SLs percolate drives a low-mobility-to-highmobility transport crossover that can be extrapolated to genuinely macroscopic length scales. For the theoretical description, we adapted the Efros-Shklovskii bimodal mobility distribution percolation model. We demonstrated that the ES bimodal theory’s two-variable scaling function is an effective tool to quantitatively characterize this low-mobility-to-high-mobility transport crossover. 
    more » « less
  3. Strigolactones (SLs) are a class of phytohormones playing diverse roles in plant growth and development, yet the limited access to SLs is largely impeding SL-based foundational investigations and applications. Here, we developed Escherichia coli – Saccharomyces cerevisiae consortia to establish a microbial biosynthetic platform for the synthesis of various SLs, including carlactone, carlactonoic acid, 5-deoxystrigol (5DS; 6.65 ± 1.71 μg/liter), 4-deoxyorobanchol (3.46 ± 0.28 μg/liter), and orobanchol (OB; 19.36 ± 5.20 μg/liter). The SL-producing platform enabled us to conduct functional identification of CYP722Cs from various plants as either OB or 5DS synthase. It also allowed us to quantitatively compare known variants of plant SL biosynthetic enzymes in the microbial system. The titer of 5DS was further enhanced through pathway engineering to 47.3 μg/liter. This work provides a unique platform for investigating SL biosynthesis and evolution and lays the foundation for developing SL microbial production process. 
    more » « less
  4. Abstract Superlattices (SLs) can induce phonon coherence through the periodic layering of two or more materials, enabling tailored thermal transport properties. While most theoretical studies assume atomically sharp, perfect interfaces, real SLs often feature atomic interdiffusion spanning approximately a single atomic layer or more. Such interface mixing can significantly influence phonon coherence and transport behavior. In this study, we employ atomistic wave-packet simulations to systematically investigate the effects of interface mixing on coherent heat conduction. Our analysis identifies two competing mechanisms that govern phonon transport across mixed interfaces: (1) interface mixing disrupts coherent mode-conversion effects arising from the interface arrangement. (2) The disorder enhances the potential for interference events, generating additional coherent phonon transport pathways. The second mechanism enhances the transmission of Bragg-reflected modes in periodic SLs and most phonons in aperiodic SLs, which otherwise lack coherent mode-conversion in perfect structures. Conversely, the first mechanism dominates in periodic SLs for non-Bragg-reflected modes, where transmission is already high due to substantial mode-conversion. These findings provide insights into the interplay between interface imperfections and phonon coherence. 
    more » « less
  5. Abstract MnBi 2 Te 4 /(Bi 2 Te 3 ) n materials system has recently generated strong interest as a natural platform for the realization of the quantum anomalous Hall (QAH) state. The system is magnetically much better ordered than substitutionally doped materials, however, the detrimental effects of certain disorders are becoming increasingly acknowledged. Here, from compiling structural, compositional, and magnetic metrics of disorder in ferromagnetic (FM) MnBi 2 Te 4 /(Bi 2 Te 3 ) n it is found that migration of Mn between MnBi 2 Te 4 septuple layers (SLs) and otherwise non-magnetic Bi 2 Te 3 quintuple layers (QLs) has systemic consequences—it induces FM coupling of Mn-depleted SLs with Mn-doped QLs, seen in ferromagnetic resonance as an acoustic and optical resonance mode of the two coupled spin subsystems. Even for a large SL separation ( n ≳ 4 QLs) the structure cannot be considered as a stack of uncoupled two-dimensional layers. Angle-resolved photoemission spectroscopy and density functional theory studies show that Mn disorder within an SL causes delocalization of electron wave functions and a change of the surface band structure as compared to the ideal MnBi 2 Te 4 /(Bi 2 Te 3 ) n . These findings highlight the critical importance of inter- and intra-SL disorder towards achieving new QAH platforms as well as exploring novel axion physics in intrinsic topological magnets. 
    more » « less