skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experimental error analysis of biomechanical phenotyping for stalk lodging resistance in maize
Abstract Stalk lodging destroys between 5 and 25% of grain crops annually. Developing crop varieties with improved lodging resistance will reduce the yield gap. Field-phenotyping equipment is critical to develop lodging resistant crop varieties, but current equipment is hindered by measurement error. Relatively little research has been done to identify and rectify sources of measurement error in biomechanical phenotyping platforms. This study specifically investigated sources of error in bending stiffness and bending strength measurements of maize stalks acquired using an in-field phenotyping platform known as the DARLING. Three specific sources of error in bending stiffness and bending strength measurements were evaluated: horizontal device placement, vertical device placement and incorrect recordings of load cell height. Incorrect load cell heights introduced errors as large as 130% in bending stiffness and 50% in bending strength. Results indicated that errors on the order of 15–25% in bending stiffness and 1–10% in bending strength are common in field-based measurements. Improving the design of phenotyping devices and associated operating procedures can mitigate this error. Reducing measurement error in field-phenotyping equipment is crucial for advancing the development of improved, lodging-resistant crop varieties. Findings have important implications for reducing the yield gap.  more » « less
Award ID(s):
1826715
PAR ID:
10545301
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stalk lodging contributes to significant crop yield losses. Therefore, understanding the biomechanical strength and structural rigidity of grain stalks can contribute to improving stalk lodging resistance in crops. From the structural constituents of the stalk, the rind provides the principal structure, supporting cells against tension and bending loads. In this work, the biomechanical and viscoelastic behavior of the rind from the internodes of two sweet sorghum varieties (Della and REDforGREEN (RG)), grown in two different growing seasons, were evaluated by three-point micro-bending tests using a dynamic mechanical analyzer (DMA). In addition, the chemical composition of rinds and the microfibril angle (MFA) of the cell wall were determined using XRD. The results revealed that the biomechanical behavior of Della varieties was stiffer and more resistant to loads than that of RG varieties. Two features of the rind biomechanical properties, flexural modulus (FM) and flexural strength (FS), showed a significant reduction for RG. Particularly, a reduction in FS of 16–37% and in FM of 22–41% were detected for RG1. Changes in the stalks’ rind biomechanical properties were attributed to cell wall components. Total lignin and glucan/cellulose contents were positively correlated with the FM and FS of the rind. Subsequently, an increase in the two cell wall components drove an increase in stiffness. Furthermore, the MFA of the rind was also found to influence the rind strength. 
    more » « less
  2. Abstract BackgroundStalk lodging (the premature breaking of plant stalks or stems prior to harvest) is a persistent agricultural problem that causes billions of dollars in lost yield every year. Three-point bending tests, and rind puncture tests are common biomechanical measurements utilized to investigate crops susceptibility to lodging. However, the effect of testing rate on these biomechanical measurements is not well understood. In general, biological specimens (including plant stems) are well known to exhibit viscoelastic mechanical properties, thus their mechanical response is dependent upon the rate at which they are deflected. However, there is very little information in the literature regarding the effect of testing rate (aka displacement rate) on flexural stiffness, bending strength and rind puncture measurements of plant stems. ResultsFully mature and senesced maize stems and wheat stems were tested in three-point bending at various rates. Maize stems were also subjected to rind penetration tests at various rates. Testing rate had a small effect on flexural stiffness and bending strength calculations obtained from three-point bending tests. Rind puncture measurements exhibited strong rate dependent effects. As puncture rate increased, puncture force decreased. This was unexpected as viscoelastic materials typically show an increase in resistive force when rate is increased. ConclusionsTesting rate influenced three-point bending test results and rind puncture measurements of fully mature and dry plant stems. In green stems these effects are expected to be even larger. When conducting biomechanical tests of plant stems it is important to utilize consistent span lengths and displacement rates within a study. Ideally samples should be tested at a rate similar to what they would experience in-vivo. 
    more » « less
  3. Phenotyping plants is an essential component of any effort to develop new crop varieties. As plant breeders seek to increase crop productivity and produce more food for the future, the amount of phenotype information they require will also increase. Traditional plant phenotyping relying on manual measurement is laborious, time-consuming, error-prone, and costly. Plant phenotyping robots have emerged as a high-throughput technology to measure morphological, chemical and physiological properties of large number of plants. Several robotic systems have been developed to fulfill different phenotyping missions. In particular, robotic phenotyping has the potential to enable efficient monitoring of changes in plant traits over time in both controlled environments and in the field. The operation of these robots can be challenging as a result of the dynamic nature of plants and the agricultural environments. Here we discuss developments in phenotyping robots, and the challenges which have been overcome and others which remain outstanding. In addition, some perspective applications of the phenotyping robots are also presented. We optimistically anticipate that autonomous and robotic systems will make great leaps forward in the next 10 years to advance the plant phenotyping research into a new era. 
    more » « less
  4. Context: Stalk lodging causes up to 43 % of yield losses in maize (Zea mays L.) worldwide, significantly worsening food and feed shortages. Stalk lodging resistance is a complex trait specified by several structural, material, and geometric phenotypes. However, the identity, relative contribution, and genetic tractability of these intermediate phenotypes remain unknown. Objective: The study is designed to identify and evaluate plant-, organ-, and tissue-level intermediate phenotypes associated with stalk lodging resistance following standardized phenotyping protocols and to understand the variation and genetic tractability of these intermediate phenotypes. Methods: We examined 16 diverse maize hybrids in two environments to identify and evaluate intermediate phenotypes associated with stalk flexural stiffness, a reliable indicator of stalk lodging resistance, at physiological maturity. Engineering-informed and machine learning models were employed to understand relationships among intermediate phenotypes and stalk flexural stiffness. Results: Stalk flexural stiffness showed significant genetic variation and high heritability (0.64) in the evaluated hybrids. Significant genetic variation and comparable heritability for the cross-sectional moment of inertia and Young’s modulus indicated that geometric and material properties are under tight genetic control and play a combinatorial role in determining stalk lodging resistance. Among the twelve internode-level traits measured on the bottom and the ear internode, most traits exhibited significant genetic variation among hybrids, moderate to high heritability, and considerable effect of genotype × environment interaction. The marginal statistical model based on structural engineering beam theory revealed that 74–80 % of the phenotypic variation for flexural stiffness was explained by accounting for the major diameter, minor diameter, and rind thickness of the stalks. The machine learning model explained a relatively modest proportion (58–62 %) of the variation for flexural stiffness. 
    more » « less
  5. Additive manufacturing has been used to develop a variety of scaffold designs for clinical and industrial applications. Mechanical properties (i.e., compression, tension, bending, and torsion response) of these scaffolds are significantly important for load-bearing orthopaedic implants. In this study, we designed and additively manufactured porous metallic biomaterials based on two different types of triply periodic minimal surface structures (i.e., gyroid and diamond) that mimic the mechanical properties of bone, such as porosity, stiffness, and strength. Physical and mechanical properties, including compressive, tensile, bending, and torsional stiffness and strength of the developed scaffolds, were then characterised experimentally and numerically using finite element method. Sheet thickness was constant at 300 μm, and the unit cell size was varied to generate different pore sizes and porosities. Gyroid scaffolds had a pore size in the range of 600–1200 μm and a porosity in the range of 54–72%, respectively. Corresponding values for the diamond were 900–1500 μm and 56–70%. Both structure types were validated experimentally, and a wide range of mechanical properties (including stiffness and yield strength) were predicted using the finite element method. The stiffness and strength of both structures are comparable to that of cortical bone, hence reducing the risks of scaffold failure. The results demonstrate that the developed scaffolds mimic the physical and mechanical properties of cortical bone and can be suitable for bone replacement and orthopaedic implants. However, an optimal design should be chosen based on specific performance requirements. 
    more » « less