skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Life history scaling in a tropical forest
Abstract Both tree size and life history variation drive forest structure and dynamics, but little is known about how life history frequency changes with size. We used a scaling framework to quantify ontogenetic size variation and assessed patterns of abundance, richness, productivity and light interception across life history strategies from >114,000 trees in a primary, neotropical forest. We classified trees along two life history axes: a fast–slow axis characterized by a growth–survival trade‐off, and a stature–recruitment axis with tall, long‐lived pioneers at one end and short, short‐lived recruiters at the other.Relative abundance, richness, productivity and light interception follow an approximate power law, systematically shifting over an order of magnitude with tree size. Slow saplings dominate the understorey, but slow trees decline to parity with rapidly growing fast and long‐lived pioneer species in the canopy.Like the community as a whole, slow species are the closest to obeying the energy equivalence rule (EER)—with equal productivity per size class—but other life histories strongly increase productivity with tree size. Productivity is fuelled by resources, and the scaling of light interception corresponds to the scaling of productivity across life history strategies, with slow and all species near solar energy equivalence. This points towards a resource‐use corollary to the EER: the resource equivalence rule.Fitness trade‐offs associated with tree size and life history may promote coexistence in tropical forests by limiting niche overlap and reducing fitness differences. Synthesis . Tree life history strategies describe the different ways trees grow, survive and recruit in the understorey. We show that the proportion of trees with a pioneer life history strategy increases steadily with tree size, as pioneers become relatively more abundant, productive, diverse and capture more resources towards the canopy. Fitness trade‐offs associated with size and life history strategy offer a mechanism for coexistence in tropical forests.  more » « less
Award ID(s):
1926567 1550765
PAR ID:
10545465
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
British Ecological Society
Date Published:
Journal Name:
Journal of Ecology
Volume:
112
Issue:
3
ISSN:
0022-0477
Page Range / eLocation ID:
487 to 500
Subject(s) / Keyword(s):
coexistence energy equivalence life history niche scaling tropical forests
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Lightning strikes kill hundreds of millions of trees annually, but their role in shaping tree life history and diversity is largely unknown.Here, we use data from a unique lightning location system to show that some individual trees counterintuitively benefit from being struck by lightning.Lightning killed 56% of 93 directly struck trees and caused an average of 41% crown dieback among the survivors. However, among these struck trees, 10 direct strikes caused negligible damage toDipteryx oleiferatrees while killing 78% of their lianas and 2.1 Mg of competitor tree biomass. Nine trees of other long‐lived taxa survived lightning with similar benefits. On average, aD. oleiferatree > 60 cm in diameter is struck by lightning at least five times during its lifetime, conferring these benefits repeatedly. We estimate that the ability to survive lightning increases lifetime fecundity 14‐fold, largely because of reduced competition from lianas and neighboring trees. Moreover, the unusual heights and wide crowns ofD. oleiferaincrease the probability of a direct strike by 49–68% relative to trees of the same diameter with average allometries.These patterns suggest that lightning plays an underappreciated role in tree competition, life history strategies, and species coexistence. 
    more » « less
  2. Niche differentiation with respect to light availability as it varies across succession has often been thought to explain tree species coexistence. Demographic light‐related niches represented by growth‐survival and stature‐recruitment trade‐offs and captured by demographic groups (slow, fast, long‐lived pioneers, short‐lived breeders and intermediate) have been shown to accurately represent the biomass dynamics of secondary and old‐growth forests in central Panama in a model. However, whether the simple mechanisms of that well‐parameterized and accurate model are enough to support the long‐term coexistence of demographic groups across these trade‐offs has yet to be tested.Here, we develop a model to test whether stochastic, small‐scale gap disturbances and subsequent competition for light can support the long‐term coexistence of the observed demographic groups in the Barro Colorado Island forest dynamics plot. Specifically, to test whether the demographic differences among species promote coexistence, we compare niche simulation models, parameterized by the different demographic groups, to a variety of neutral models, where the species have the same demographic parameters.Upon exploring the estimated range of possible parameterizations of recruitment (a difficult‐to‐measure parameter), we identify several parameterizations where differences among groups along the growth‐survival and stature‐recruitment trade‐off axes facilitate long‐term coexistence. We find that gap disturbances are essential for these results, indicating that it is the differences in the subsequent competition for light through time that provide the opportunity for stabilizing niche differentiation. Additionally, the parameterizations that generate stable coexistence display successional negative density dependence and realistic within‐patch post‐disturbance forest dynamics.Synthesis. This model‐data integration exercise indicates that small‐scale disturbances and subsequent competition for light may be significant forces for stable diversity maintenance of demographic groups along the growth–survival and stature–recruitment trade‐off axes in a neotropical forest. This result, however, holds only for a subset of the empirically reasonable recruitment parameters, indicating the importance of improving the understanding of recruitment and its demographic trade‐offs for understanding demographic strategy coexistence. 
    more » « less
  3. Alison Davis Rabosky (Ed.)
    Abstract Fitness trade‐offs are a foundation of ecological and evolutionary theory because trade‐offs can explain life history variation, phenotypic plasticity, and the existence of polyphenisms.Using a 32‐year mark‐recapture dataset on lifetime fitness for 1093 adult Arizona tiger salamanders (Ambystoma mavortium nebulosum) from a high elevation, polyphenic population, we evaluated the extent to which two life history morphs (aquatic paedomorphs vs. terrestrial metamorphs) exhibited fitness trade‐offs in breeding and body condition with respect to environmental variation (e.g. climate) and internal state‐based variables (e.g. age).Both morphs displayed a similar response to higher probabilities of breeding during years of high spring precipitation (i.e. not indicative of a morph‐specific fitness trade‐off). There were likely no climate‐induced fitness trade‐offs on breeding state for the two life history morphs because precipitation and water availability are vital to amphibian reproduction.Body condition displayed a contrasting response for the two morphs that was indicative of a climate‐induced fitness trade‐off. While metamorphs exhibited a positive relationship with summer snowpack conditions, paedomorphs were unaffected. Fitness trade‐offs from summer snowpack are likely due to extended hydroperiods in temporary ponds, where metamorphs gain a fitness advantage during the summer growing season by exploiting resources that are unavailable to paeodomorphs. However, paedomorphs appear to have the overwintering fitness advantage because they consistently had higher body condition than metamorphs at the start of the summer growing season.Our results reveal that climate and habitat type (metamorphs as predominately terrestrial, paedomorphs as fully aquatic) interact to confer different advantages for each morph. These results advance our current understanding of fitness trade‐offs in this well‐studied polyphenic amphibian by integrating climate‐based mechanisms. Our conclusions prompt future studies to explore how climatic variation can maintain polyphenisms and promote life history diversity, as well as the implications of climate change for polyphenisms. 
    more » « less
  4. Abstract Ecological restoration is beneficial to ecological communities in this era of large‐scale landscape change and ecological disruption. However, restoration outcomes are notoriously variable, which makes fine‐scale decision‐making challenging. This is true for restoration efforts that follow large fires, which are increasingly common as the climate changes.Post‐fire restoration efforts, like tree planting and seeding have shown mixed success, though the causes of the variation in restoration outcomes remain unclear. Abiotic factors such as elevation and fire severity, as well as biotic factors, such as residual canopy cover and abundance of competitive understorey grasses, can vary across a burned area and may all influence the success of restoration efforts to re‐establish trees following forest fires.We examined the effect of these factors on the early seedling establishment of a tree species—māmane (Sophora chrysophylla)—in a subtropical montane woodland in Hawaiʻi. Following a human‐caused wildfire, we sowed seeds of māmane as part of a restoration effort. We co‐designed a project to examine māmane seedling establishment.We found that elevation was of overriding importance, structuring total levels of plant establishment, with fewer seedlings establishing at higher elevations. Residual canopy cover was positively correlated with seedling establishment, while cover by invasive, competitive understorey grasses very weakly positively correlated with increased seedling establishment.Our results point to specific factors structuring plant establishment following a large fire and suggest additional targeted restoration actions within this subtropical system. For example, if greater native woody recruitment is a management goal, then actions could include targeted seed placement at lower elevations where establishment is more likely, increased seeding densities at high elevation where recruitment rates are lower, and/or invasive grass removal prior to seeding. Such actions may result in faster native ecosystem recovery, which is a goal of local land managers. 
    more » « less
  5. NA (Ed.)
    Summary Trade‐offs among carbon sinks constrain how trees physiologically, ecologically, and evolutionarily respond to their environments. These trade‐offs typically fall along a productive growth to conservative, bet‐hedging continuum. How nonstructural carbohydrates (NSCs) stored in living tree cells (known as carbon stores) fit in this trade‐off framework is not well understood.We examined relationships between growth and storage using both within species genetic variation from a common garden, and across species phenotypic variation from a global database.We demonstrate that storage is actively accumulated, as part of a conservative, bet‐hedging life history strategy. Storage accumulates at the expense of growth both within and across species. Within the speciesPopulus trichocarpa, genetic trade‐offs show that for each additional unit of wood area growth (in cm2 yr−1) that genotypes invest in, they lose 1.2 to 1.7 units (mg g−1NSC) of storage. Across species, for each additional unit of area growth (in cm2 yr−1), trees, on average, reduce their storage by 9.5% in stems and 10.4% in roots.Our findings impact our understanding of basic plant biology, fit storage into a widely used growth‐survival trade‐off spectrum describing life history strategy, and challenges the assumptions of passive storage made in ecosystem models today. 
    more » « less