skip to main content


Search for: All records

Award ID contains: 1926567

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Aim

    Rapid global change is impacting the diversity of tree species and essential ecosystem functions and services of forests. It is therefore critical to understand and predict how the diversity of tree species is spatially distributed within and among forest biomes. Satellite remote sensing platforms have been used for decades to map forest structure and function but are limited in their capacity to monitor change by their relatively coarse spatial resolution and the complexity of scales at which different dimensions of biodiversity are observed in the field. Recently, airborne remote sensing platforms making use of passive high spectral resolution (i.e., hyperspectral) and active lidar data have been operationalized, providing an opportunity to disentangle how biodiversity patterns vary across space and time from field observations to larger scales. Most studies to date have focused on single sites and/or one sensor type; here we ask how multiple sensor types from the National Ecological Observatory Network’s Airborne Observation Platform (NEON AOP) perform across multiple sites in a single biome at the NEON field plot scale (i.e., 40 m × 40 m).

    Location

    Eastern USA.

    Time period

    2017–2018.

    Taxa studied

    Trees.

    Methods

    With a fusion of hyperspectral and lidar data from the NEON AOP, we assess the ability of high resolution remotely sensed metrics to measure biodiversity variation across eastern US temperate forests. We examine how taxonomic, functional, and phylogenetic measures of alpha diversity vary spatially and assess to what degree remotely sensed metrics correlate with in situ biodiversity metrics.

    Results

    Models using estimates of forest function, canopy structure, and topographic diversity performed better than models containing each category alone. Our results show that canopy structural diversity, and not just spectral reflectance, is critical to predicting biodiversity.

    Main conclusions

    We found that an approach that jointly leverages spectral properties related to leaf and canopy functional traits and forest health, lidar derived estimates of forest structure, fine‐resolution topographic diversity, and careful consideration of biogeographical differences within and among biomes is needed to accurately map biodiversity variation from above.

     
    more » « less
  2. Abstract

    Understanding patterns and drivers of species distribution and abundance, and thus biodiversity, is a core goal of ecology. Despite advances in recent decades, research into these patterns and processes is currently limited by a lack of standardized, high‐quality, empirical data that span large spatial scales and long time periods. The NEON fills this gap by providing freely available observational data that are generated during robust and consistent organismal sampling of several sentinel taxonomic groups within 81 sites distributed across the United States and will be collected for at least 30 years. The breadth and scope of these data provide a unique resource for advancing biodiversity research. To maximize the potential of this opportunity, however, it is critical that NEON data be maximally accessible and easily integrated into investigators' workflows and analyses. To facilitate its use for biodiversity research and synthesis, we created a workflow to process and format NEON organismal data into the ecocomDP (ecological community data design pattern) format that were available through the ecocomDP R package; we then provided the standardized data as an R data package (neonDivData). We briefly summarize sampling designs and data wrangling decisions for the major taxonomic groups included in this effort. Our workflows are open‐source so the biodiversity community may: add additional taxonomic groups; modify the workflow to produce datasets appropriate for their own analytical needs; and regularly update the data packages as more observations become available. Finally, we provide two simple examples of how the standardized data may be used for biodiversity research. By providing a standardized data package, we hope to enhance the utility of NEON organismal data in advancing biodiversity research and encourage the use of the harmonized ecocomDP data design pattern for community ecology data from other ecological observatory networks.

     
    more » « less
  3. Abstract

    It is a critical time to reflect on the National Ecological Observatory Network (NEON) science to date as well as envision what research can be done right now with NEON (and other) data and what training is needed to enable a diverse user community. NEON became fully operational in May 2019 and has pivoted from planning and construction to operation and maintenance. In this overview, the history of and foundational thinking around NEON are discussed. A framework of open science is described with a discussion of how NEON can be situated as part of a larger data constellation—across existing networks and different suites of ecological measurements and sensors. Next, a synthesis of early NEON science, based on >100 existing publications, funded proposal efforts, and emergent science at the very first NEON Science Summit (hosted by Earth Lab at the University of Colorado Boulder in October 2019) is provided. Key questions that the ecology community will address with NEON data in the next 10 yr are outlined, from understanding drivers of biodiversity across spatial and temporal scales to defining complex feedback mechanisms in human–environmental systems. Last, the essential elements needed to engage and support a diverse and inclusive NEON user community are highlighted: training resources and tools that are openly available, funding for broad community engagement initiatives, and a mechanism to share and advertise those opportunities. NEON users require both the skills to work with NEON data and the ecological or environmental science domain knowledge to understand and interpret them. This paper synthesizes early directions in the community’s use of NEON data, and opportunities for the next 10 yr of NEON operations in emergent science themes, open science best practices, education and training, and community building.

     
    more » « less
  4. Disturbance regimes can strongly influence geographic patterns of biodiversity. The types of disturbances and their frequencies can have varying impacts on different dimensions of biodiversity and taxonomic groups, and their influence can also vary with spatial scale. Yet disturbance layers are lacking at sufficiently high spatial resolution and extent to uncover these relationships with biodiversity. We detected disturbances for the conterminous United States from Landsat time series using the established LandTrendr temporal segmentation with a novel secondary classification that incorporates spatial context. We then included these disturbance layers, aggregated to metrics at different temporal and spatial scales, into model of species richness at National Ecological Observatory Network sites. 
    more » « less
  5. Goslee, Sarah (Ed.)
    1. The geodiv r package calculates gradient surface metrics from imagery and other gridded datasets to provide continuous measures of landscape heterogeneity for landscape pattern analysis. 2. geodiv is the first open-source, command line toolbox for calculating many gradient surface metrics and easily integrates parallel computing for applications with large images or rasters (e.g. remotely sensed data). All functions may be applied either globally to derive a single metric for an entire image or locally to create a texture image over moving windows of a user-defined extent. 3. We present a comprehensive description of the functions available through geodiv. A supplemental vignette provides an example application of geodiv to the fields of landscape ecology and biogeography. 4. geodiv allows users to easily retrieve estimates of spatial heterogeneity for a variety of purposes, enhancing our understanding of how environmental structure influences ecosystem processes. The package works with any continuous imagery and may be widely applied in many fields where estimates of surface complexity are useful. 
    more » « less