skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bayesian inference of multi-messenger astrophysical data: Joint and coherent inference of gravitational waves and kilonovae
Context. Multi-messenger observations of binary neutron star mergers can provide information on the neutron star’s equation of state (EOS) above the nuclear saturation density by directly constraining the mass-radius diagram. Aims. We present a Bayesian framework for joint and coherent analyses of multi-messenger binary neutron star signals. As a first application, we analyze the gravitational-wave GW170817 and the kilonova (kN) AT2017gfo data. These results are then combined with the most recent X-ray pulsar analyses of PSR J0030+0451 and PSR J0740+6620 to obtain new EOS constraints. Methods. We extend the bajes infrastructure with a joint likelihood for multiple datasets, support for various semi-analytical kN models, and numerical-relativity (NR)-informed relations for the mass ejecta, as well as a technique to include and marginalize over modeling uncertainties. The analysis of GW170817 used theTEOBResumSeffective-one-body waveform template to model the gravitational-wave signal. The analysis of AT2017gfo used a baseline multicomponent spherically symmetric model for the kN light curves. Various constraints on the mass-radius diagram and neutron star properties were then obtained by resampling over a set of ten million parameterized EOSs, which was built under minimal assumptions (general relativity and causality). Results. We find that a joint and coherent approach improves the inference of the extrinsic parameters (distance) and, among the intrinsic parameters, the mass ratio. The inclusion of NR-informed relations marks a strong improvement over the case in which an agnostic prior is used on the intrinsic parameters. Comparing Bayes factors, we find that the two observations are better explained by the common source hypothesis only by assuming NR-informed relations. These relations break some of the degeneracies in the employed kN models. The EOS inference folding-in PSR J0952-0607 minimum-maximum mass, PSR J0030+0451 and PSR J0740+6620 data constrains, among other quantities, the neutron star radius toR1.4TOV= 12.30− 0.56+ 0.81km(R1.4TOV= 13.20− 0.90+ 0.91km) and the maximum mass toMmaxTOV= 2.28− 0.17+ 0.25M(MmaxTOV= 2.32− 0.19+ 0.30M), where the ST+PDT (PDT-U) analysis of Vinciguerra et al. (2024, ApJ, 961, 62) for PSR J0030+0451 was employed. Hence, the systematics on the PSR J0030+0451 data reduction currently dominate the mass-radius diagram constraints. Conclusions. We conclude that bajes delivers robust analyses in line with other state-of-the-art results in the literature. Strong EOS constraints are provided by pulsars observations, albeit with large systematics in some cases. Current gravitational-wave constraints are compatible with pulsar constraints and can further improve the latter.  more » « less
Award ID(s):
2011725
PAR ID:
10545490
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
EDP Sciences
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
689
ISSN:
0004-6361
Page Range / eLocation ID:
A51
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Multimessenger observations of binary neutron star mergers can provide valuable information on the nuclear equation of state (EOS). Here, we investigate the extent to which electromagnetic observations of the associated kilonovae allow us to place constraints on the EOS. For this, we use state-of-the-art three-dimensional general-relativistic magnetohydrodynamics simulations and detailed nucleosynthesis modeling to connect properties of observed light curves to properties of the accretion disk, and hence, the EOS. Using our general approach, we use multimessenger observations of GW170817/AT2017gfo to study the impact of various sources of uncertainty on inferences of the EOS. We constrain the radius of a 1.4Mneutron star to lie within 10.30 ≤R1.4≤ 13.0 km and the maximum mass to beMTOV≤ 3.06M
    more » « less
  2. Abstract Over the past decade, an abundance of information from neutron-star observations, nuclear experiments and theory has transformed our efforts to elucidate the properties of dense matter. However, at high densities relevant to the cores of neutron stars, substantial uncertainty about the dense matter equation of state (EoS) remains. In this work, we present a semiparametric equation of state framework aimed at better integrating knowledge across these domains in astrophysical inference. We use a Meta-model and realistic crust at low densities, and Gaussian Process extensions at high densities. Comparisons between our semiparametric framework to fully nonparametric EoS representations show that imposing nuclear theoretical and experimental constraints through the Meta-model up to nuclear saturation density results in constraints on the pressure up to twice nuclear saturation density. We also show that our Gaussian Process trained on EoS models with nucleonic, hyperonic, and quark compositions extends the range of EoS explored at high density compared to a piecewise polytropic extension schema, under the requirements of causality of matter and of supporting the existence of heavy pulsars. We find that maximum TOV masses above $$3.2 M_{\odot}$$ can be supported by causal EoS compatible with nuclear constraints at low densities. We then combine information from existing observations of heavy pulsar masses, gravitational waves emitted from binary neutron star mergers, and X-ray pulse profile modeling of millisecond pulsars within a Bayesian inference scheme using our semiparametric EoS prior. With information from all public NICER pulsars (including PSR J0030$$+$$0451, PSR J0740$$+$$6620, PSR J0437-4715, and PSR J0614-3329), we find an astrophysically favored pressure at two times nuclear saturation density of $$P(2\rho_{\rm nuc}) = 1.98^{+2.13}_{-1.08}\times10^{34}$$ dyn/cm$$^{2}$$, a radius of a $$1.4 M_{\odot}$$ neutron star value of $$R_{1.4} = 11.4^{+0.98}_{-0.60}$$\;km, and $$M_{\rm max} = 2.31_{-0.23}^{+0.35} M_{\odot}$$ at the 90\% credible level. 
    more » « less
  3. Abstract The equation of state (EOS) of dense strongly interacting matter can be probed by astrophysical observations of neutron stars (NS), such as X-ray detections of pulsars or the measurement of the tidal deformability of NSs during the inspiral stage of NS mergers. These observations constrain the EOS at most up to the density of the maximum-mass configuration,nTOV, which is the highest density that can be explored by stable NSs for a given EOS. However, under the right circumstances, binary neutron star (BNS) mergers can create a postmerger remnant that explores densities abovenTOV. In this work, we explore whether the EOS abovenTOVcan be measured from gravitational-wave or electromagnetic observations of the postmerger remnant. We perform a total of 25 numerical-relativity simulations of BNS mergers for a range of EOSs and find no case in which different descriptions of the matter abovenTOVhave a detectable impact on postmerger observables. Hence, we conclude that the EOS abovenTOVcan likely not be probed through BNS merger observations for the current and next generation of detectors. 
    more » « less
  4. null (Ed.)
    ABSTRACT The joint detection of the gravitational wave GW170817, of the short γ-ray burst GRB170817A and of the kilonova AT2017gfo, generated by the the binary neutron star (NS) merger observed on 2017 August 17, is a milestone in multimessenger astronomy and provides new constraints on the NS equation of state. We perform Bayesian inference and model selection on AT2017gfo using semi-analytical, multicomponents models that also account for non-spherical ejecta. Observational data favour anisotropic geometries to spherically symmetric profiles, with a log-Bayes’ factor of ∼104, and favour multicomponent models against single-component ones. The best-fitting model is an anisotropic three-component composed of dynamical ejecta plus neutrino and viscous winds. Using the dynamical ejecta parameters inferred from the best-fitting model and numerical–relativity relations connecting the ejecta properties to the binary properties, we constrain the binary mass ratio to q < 1.54 and the reduced tidal parameter to $$120\lt \tilde{\Lambda }\lt 1110$$. Finally, we combine the predictions from AT2017gfo with those from GW170817, constraining the radius of a NS of 1.4 M⊙ to 12.2 ± 0.5 km (1σ level). This prediction could be further strengthened by improving kilonova models with numerical-relativity information. 
    more » « less
  5. Neutron stars provide a window into the properties of dense nuclear matter. Several recent observational and theoretical developments provide powerful constraints on their structure and internal composition. Among these are the first observed binary neutron star merger, GW170817, whose gravitational radiation was accompanied by electromagnetic radiation from a short γ-ray burst and an optical afterglow believed to be due to the radioactive decay of newly minted heavy r-process nuclei. These observations give important constraints on the radii of typical neutron stars and on the upper limit to the neutron star maximum mass and complement recent pulsar observations that established a lower limit. Pulse-profile observations by the Neutron Star Interior Composition Explorer (NICER) X-ray telescope provide an independent, consistent measure of the neutron star radius. Theoretical many-body studies of neutron matter reinforce these estimates of neutron star radii. Studies using parameterized dense matter equations of state (EOSs) reveal several EOS-independent relations connecting global neutron star properties. 
    more » « less