The utilization of remote operated vehicles (ROVs) has become essential across various subsea industries, such as oil and gas exploration and offshore wind energy, yet significant challenges remain in achieving effective human-ROV interaction. Despite advancements, ROV operations are hindered by complex control systems, high physical and cognitive demands on pilots, and a lack of sensory feedback mechanisms that fully convey the underwater environment’s dynamics. This study addresses these gaps by surveying ROV pilots and industry stakeholders to identify prevalent operational challenges, essential skills, and perspectives on integrating novel teleoperation technologies, including mixed reality and haptic feedback. Findings reveal a strong industry interest in technologies that enhance situational awareness and ease control demands, although concerns remain regarding practical integration and operator fatigue. By highlighting the critical skills required and potential benefits of human-centered augmentation systems, this study provides insights to inform future ergonomic designs, training frameworks, and technology development aimed at advancing safe and effective ROV teleoperation.
more »
« less
Leveraging patent analysis to measure relatedness between technology domains: An application on offshore wind energy
Abstract As the global energy sector transitions towards a cleaner and more sustainable future, observational evidence suggests that many new energy technologies share a close relationship with well-established technologies. Yet, the topic of how closely technologies are related has not been addressed rigorously, rather it has been the purview of practitioner know-how and informal expert opinion. In this study, we propose a quantitative method to supplement practitioners’ subjective understanding of the relatedness between technology domains. The method uses patents to represent the position of a technology in knowledge space and calculates the Hausdorff distance between patent domains to proxy the relatedness between technologies. We apply this method to investigate the relatedness of offshore wind energy technology to two more mature domains: onshore wind energy technology and offshore oil and gas technology. We examine the technological relatedness of individual offshore wind components to these two technologies, and represent the changes in relatedness through time. The results confirm that offshore wind components such as foundations, installation, and maintenance are more related to the offshore oil and gas industry; while other components, such as rotors and nacelles, are more related to onshore wind energy. The results also suggest that many offshore wind energy components are becoming less related through time to both of these domains, possibly indicating increasing innovation. This method can provide quantitative parameters to improve the modeling of technological change and guide practitioners in strategic decision-making regarding the positioning of industries and firms within those industries.
more »
« less
- Award ID(s):
- 2020888
- PAR ID:
- 10545513
- Publisher / Repository:
- IOP Science
- Date Published:
- Journal Name:
- Environmental Research Letters
- ISSN:
- 1748-9326
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract As the world transitions towards sustainable energy sources, offshore wind farms are one of the options under consideration in several countries. Some countries, for instance, the Netherlands, Denmark, Germany, the UK, and China, have already constructed multiple offshore wind farms. Other countries, such as the United States in North America and Brazil in South America, are making movements toward offshore wind. One potential problem is that offshore wind farm wakes can extend for longer distances than onshore, placing challenges on potential wake losses due to farm-to-farm interaction effects. This study proposes a farm-to-farm benchmark to complement ongoing experimental and computational efforts. We consider eight engineering wake models and 31 cases of pairs of existing offshore wind farms, totaling 248 simulations. The results varied according to the engineering wake model applied, alignment (or not) of neighboring wind farms with the prevailing wind direction, and wind turbine capacity. The range of AEP loss significantly varied between 0.075% and around 2.3% in the extreme cases.more » « less
-
Abstract Airborne Doppler radar observations of the wind field in the tropical cyclone boundary layer (TCBL) during the landfall of Hurricane Ida (2021) are examined here. Asymmetries in tangential and radial flow are governed by tropical cyclone (TC) motion and vertical wind shear prior to landfall, while frictional effects dominate the asymmetry location during landfall. Strong TCBL inflow on the offshore‐flow side of Ida occurs during landfall, while the location of the peak tangential wind at the top of the TCBL during this period is located on the onshore‐flow side. A comparison of these observations with a numerical simulation of TC landfall shows many consistencies with the modeling study, though there are some notable differences that may be related to differences in the characteristics of the land surface between the simulation and the observations here.more » « less
-
Abstract As the world races to decarbonize power systems to mitigate climate change, the body of research analyzing paths to zero emissions electricity grids has substantially grown. Although studies typically include commercially available technologies, few of them consider offshore wind and wave energy as contenders in future zero-emissions grids. Here, we model with high geographic resolution both offshore wind and wave energy as independent technologies with the possibility of collocation in a power system capacity expansion model of the Western Interconnection with zero emissions by 2050. In this work, we identify cost targets for offshore wind and wave energy to become cost effective, calculate a 17% reduction in total installed capacity by 2050 when offshore wind and wave energy are fully deployed, and show how curtailment, generation, and transmission change as offshore wind and wave energy deployment increase.more » « less
-
null (Ed.)Proof and argumentation are essential components of learning mathematics, and technology can mediate students’ abilities to learn. This systematic literature review synthesizes empirical literature which examines technology as a support for proof and argumentation across all content domains. The themes of this review are revealed through analyzing articles related to Geometry and mathematical content domains different from Geometry. Within the Geometry literature, five subthemes are discussed: (1) empirical and theoretical interplay in dynamic geometry environments (DGEs), (2) justifying constructions using DGEs, (3) comparing technological and non-technological environments, (4) student processing in a DGE, and (5) intelligent tutor systems. Within the articles related to content different from Geometry, two subthemes are discussed: technological supports for number systems/algebra and technological supports for calculus/real analysis. The technological supports for proof revealed in this review could aid future research and practice in developing new strategies to mediate students’ understandings of proof.more » « less
An official website of the United States government

