skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simpli-Squared: Optimizing Without Cardinality Estimates
Most query optimizers rely on cardinality estimates to optimize their execution plans. Traditional databases such as PostgreSQL, Oracle, and Db2 utilize synopses, such as histograms, samples, and sketches. Recent main-memory databases like DuckDB and Heavy.AI often operate with minimal or even without estimates, yet their performance does not necessarily suffer. To the best of our knowledge, no analytical comparison has been conducted between optimizers with and without cardinality estimates. In this paper, we present a comprehensive analysis of optimizers that use cardinality estimates and those that do not. To represent optimizers that don’t use cardinality estimates, we design a simple graph-based optimizer that only utilizes join types and table sizes. Our evaluation on the Join Order Benchmark reveals that cardinality estimates have a marginal impact in non-indexed settings, whereas inaccuracies in estimates can be detrimental in indexed settings. Furthermore, the impact of cardinality estimates is negligible in highly parallel main-memory databases.  more » « less
Award ID(s):
2008815
PAR ID:
10545556
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACM SIGMOD
Date Published:
ISBN:
9798400706714
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Location:
Santiago AA Chile
Sponsoring Org:
National Science Foundation
More Like this
  1. Cost-based query optimization remains a critical task in relational databases even after decades of research and industrial development. Query optimizers rely on a large range of statistical synopses for accurate cardinality estimation. As the complexity of selections and the number of join predicates increase, two problems arise. First, statistics cannot be incrementally composed to effectively estimate the cost of the sub-plans generated in plan enumeration. Second, small errors are propagated exponentially through joins, which can lead to severely sub-optimal plans. In this paper, we introduce COMPASS, a novel query optimization paradigm for in-memory databases based on a single type of statistics---Fast-AGMS sketches. In COMPASS, query optimization and execution are intertwined. Selection predicates and sketch updates are pushed-down and evaluated online during query optimization. This allows Fast-AGMS sketches to be computed only over the relevant tuples---which enhances cardinality estimation accuracy. Plan enumeration is performed over the query join graph by incrementally composing attribute-level sketches---not by building a separate sketch for every sub-plan. We prototype COMPASS in MapD -- an open-source parallel database -- and perform extensive experiments over the complete JOB benchmark. The results prove that COMPASS generates better execution plans -- both in terms of cardinality and runtime -- compared to four other database systems. Overall, COMPASS achieves a speedup ranging from 1.35X to 11.28X in cumulative query execution time over the considered competitors. Supplementary Material Read me (3448016.3452840_readme.pdf) Download 472.23 KB Source Code (3448016.3452840_source_code.zip) Download 6.94 MB MP4 File (3448016.3452840.mp4) Cost-based query optimization remains a critical task in relational databases even after decades of research and industrial development. Query optimizers rely on a large range of statistical synopses -- including attribute-level histograms and table-level samples -- for accurate cardinality estimation. As the complexity of selection predicates and the number of join predicates increase, two problems arise. First, statistics cannot be incrementally composed to effectively estimate the cost of the sub-plans generated in plan enumeration. Second, small errors are propagated exponentially through joins, which can lead to severely sub-optimal plans. In this paper, we introduce COMPASS, a novel query optimization paradigm for in-memory databases based on a single type of statistics---Fast-AGMS sketches. In COMPASS, query optimization and execution are intertwined. Selection predicates and sketch updates are pushed-down and evaluated online during query optimization. This allows Fast-AGMS sketches to be computed only over the relevant tuples---which enhances cardinality estimation accuracy. Plan enumeration is performed over the query join graph by incrementally composing attribute-level sketches---not by building a separate sketch for every sub-plan.We prototype COMPASS in MapD -- an open-source parallel database -- and perform extensive experiments over the complete JOB benchmark. The results prove the reduced overhead COMPASS incurs, while generating better execution plans -- both in terms of cardinality and runtime -- compared to four other database systems. Overall, COMPASS achieves a speedup ranging from 1.89X to 7.09X in cumulative query execution time over the considered competitors. Moreover, COMPASS is the only optimizer that consistently generates effective plans for complex queries with 10 or more joins. 
    more » « less
  2. Recent work has reemphasized the importance of cardinality estimates for query optimization. While new techniques have continuously improved in accuracy over time, they still generally allow for under-estimates which often lead optimizers to make overly optimistic decisions. This can be very costly for expensive queries. An alternative approach to estimation is cardinality bounding, also called pessimistic cardinality estimation, where the cardinality estimator provides guaranteed upper bounds of the true cardinality. By never underestimating, this approach allows the optimizer to avoid potentially inefficient plans. However, existing pessimistic cardinality estimators are not yet practical: they use very limited statistics on the data, and cannot handle predicates. In this paper, we introduce SafeBound, the first practical system for generating cardinality bounds. SafeBound builds on a recent theoretical work that uses degree sequences on join attributes to compute cardinality bounds, extends this framework with predicates, introduces a practical compression method for the degree sequences, and implements an efficient inference algorithm. Across four workloads, SafeBound achieves up to 80% lower end-to-end runtimes than PostgreSQL, and is on par or better than state of the art ML-based estimators and pessimistic cardinality estimators, by improving the runtime of the expensive queries. It also saves up to 500x in query planning time, and uses up to 6.8x less space compared to state of the art cardinality estimation methods. 
    more » « less
  3. Q-error -- the standard metric for quantifying the error of individual cardinality estimates -- has been widely adopted as a surrogate for query plan optimality in recent work on learning-based cardinality estimation. However, the only result connecting Q-error with plan optimality is an upper-bound on the cost of the worst possible query plan computed from a set of cardinality estimates---there is no connection between Q-error and the real plans generated by standard query optimizers. Therefore, in order to identify sub-optimal query plans, we propose a learning-based method having as its main feature a novel measure called L1-error. Similar to Q-error, L1-error requires complete knowledge of true cardinalities and estimates for all the sub-plans of a query plan. Unlike Q-error, which considers the estimates independently, L1-error is defined as a permutation distance between true cardinalities and estimates for all the sub-plans having the same number of joins. Moreover, L1-error takes into account errors relative to the magnitude of their cardinalities and gives larger weight to small multi-way joins. Our experimental results confirm that, when L1-error is integrated into a standard decision tree classifier, it leads to the accurate identification of sub-optimal plans across four different benchmarks. This accuracy can be further improved by combining L1-error with Q-error into a composite feature that can be computed without overhead from the same data. 
    more » « less
  4. Abstract The join and group-by aggregation are two memory intensive operators that are affecting the performance of relational databases. Hashing is a common approach used to implement both operators. Recent paradigm shifts in multi-core processor architectures have reinvigorated research into how the join and group-by aggregation operators can leverage these advances. However, the poor spatial locality of the hashing approach has hindered performance on multi-core processor architectures which rely on using large cache hierarchies for latency mitigation. Multithreaded architectures can better cope with poor spatial locality by masking memory latency with many outstanding requests. Nevertheless, the number of parallel threads, even in the most advanced multithreaded processors, such as UltraSPARC, is not enough to fully cover the main memory access latency. In this paper, we explore the hardware re-configurability of FPGAs to enable deeper execution pipelines that maintain hundreds (instead of tens) of outstanding memory requests across four FPGAs-drastically increasing concurrency and throughput. We present two end-to-end in-memory accelerators for the join and group-by aggregation operators using FPGAs. Both accelerators use massive multithreading to mask long memory delays of traversing linked-list data structures, while concurrently managing hundreds of thread states across four FPGAs locally. We explore how content addressable memories can be intermixed within our multithreaded designs to act as a synchronizing cache , which enforces locks and merges jobs together before they are written to memory. Throughput results for our hash-join operator accelerator show a speedup between 2 $$\times $$ × and 3.4 $$\times $$ × over the best multi-core approaches with comparable memory bandwidths on uniform and skewed datasets. The accelerator for the hash-based group-by aggregation operator demonstrates that leveraging CAMs achieves average speedup of 3.3 $$\times $$ × with a best case of 9.4 $$\times $$ × in terms of throughput over CPU implementations across five types of data distributions. 
    more » « less
  5. null (Ed.)
    Query Optimization remains an open problem for Big Data Management Systems. Traditional optimizers are cost-based and use statistical estimates of intermediate result cardinalities to assign costs and pick the best plan. However, such estimates tend to become less accurate because of filtering conditions caused either from undetected correlations between multiple predicates local to a single dataset, predicates with query parameters, or predicates involving user-defined functions (UDFs). Consequently, traditional query optimizers tend to ignore or miscalculate those settings, thus leading to suboptimal execution plans. Given the volume of today’s data, a suboptimal plan can quickly become very inefficient. In this work, we revisit the old idea of runtime dynamic optimization and adapt it to a shared-nothing distributed database system, AsterixDB. The optimization runs in stages (re-optimization points), starting by first executing all predicates local to a single dataset. The intermediate result created from each stage is used to re-optimize the remaining query. This re-optimization approach avoids inaccurate intermediate result cardinality estimations, thus leading to much better execution plans. While it introduces the overhead for materializing these intermediate results, our experiments show that this overhead is relatively small and it is an acceptable price to pay given the optimization benefits. In fact, our experimental evaluation shows that runtime dynamic optimization leads to much better execution plans as compared to the current default AsterixDB plans as well as to plans produced by static cost-based optimization (i.e. based on the initial dataset statistics) and other state-of-the-art approaches. 
    more » « less