skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Improved Mixing for the Convex Polygon Triangulation Flip Walk
We prove that the well-studied triangulation flip walk on a convex point set mixes in time O(n³ log³ n), the first progress since McShine and Tetali’s O(n⁵ log n) bound in 1997. In the process we give lower and upper bounds of respectively Ω(1/(√n log n)) and O(1/√n) - asymptotically tight up to an O(log n) factor - for the expansion of the associahedron graph K_n. The upper bound recovers Molloy, Reed, and Steiger’s Ω(n^(3/2)) bound on the mixing time of the walk. To obtain these results, we introduce a framework consisting of a set of sufficient conditions under which a given Markov chain mixes rapidly. This framework is a purely combinatorial analogue that in some circumstances gives better results than the projection-restriction technique of Jerrum, Son, Tetali, and Vigoda. In particular, in addition to the result for triangulations, we show quasipolynomial mixing for the k-angulation flip walk on a convex point set, for fixed k ≥ 4.  more » « less
Award ID(s):
2212129
PAR ID:
10545642
Author(s) / Creator(s):
;
Editor(s):
Etessami, Kousha; Feige, Uriel; Puppis, Gabriele
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Volume:
261
ISSN:
1868-8969
ISBN:
978-3-95977-278-5
Page Range / eLocation ID:
261-261
Subject(s) / Keyword(s):
associahedron mixing time mcmc Markov chains triangulations quadrangulations k-angulations multicommodity flow projection-restriction Theory of computation → Approximation algorithms analysis
Format(s):
Medium: X Size: 17 pages; 1108039 bytes Other: application/pdf
Size(s):
17 pages 1108039 bytes
Right(s):
Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
Sponsoring Org:
National Science Foundation
More Like this
  1. Kumar, Amit; Ron-Zewi, Noga (Ed.)
    Let G = (V,E) be a graph on n vertices and let m^*(G) denote the size of a maximum matching in G. We show that for any δ > 0 and for any 1 ≤ k ≤ (1-δ)m^*(G), the down-up walk on matchings of size k in G mixes in time polynomial in n. Previously, polynomial mixing was not known even for graphs with maximum degree Δ, and our result makes progress on a conjecture of Jain, Perkins, Sah, and Sawhney [STOC, 2022] that the down-up walk mixes in optimal time O_{Δ,δ}(nlog{n}). In contrast with recent works analyzing mixing of down-up walks in various settings using the spectral independence framework, we bound the spectral gap by constructing and analyzing a suitable multi-commodity flow. In fact, we present constructions demonstrating the limitations of the spectral independence approach in our setting. 
    more » « less
  2. Megow, Nicole; Smith, Adam (Ed.)
    We prove that for some constant a > 1, for all k ≤ a, MATIME[n^{k(1+o(1))}]/1 ⊄ SIZE[O(n^k)], for some specific o(1) function. This is a super linear polynomial circuit lower bound. Previously, Santhanam [Santhanam, 2007] showed that there exists a constant c>1 such that for all k>1: MATIME[n^{ck}]/1 ⊄ SIZE[O(n^k)]. Inherently to Santhanam’s proof, c is a large constant and there is no upper bound on c. Using ideas from Murray and Williams [Murray and Williams, 2018], one can show for all k>1: MATIME [n^{10 k²}]/1 ⊄ SIZE[O(n^k)]. To prove this result, we construct the first PCP for SPACE[n] with quasi-linear verifier time: our PCP has a Õ(n) time verifier, Õ(n) space prover, O(log(n)) queries, and polynomial alphabet size. Prior to this work, PCPs for SPACE[O(n)] had verifiers that run in Ω(n²) time. This PCP also proves that NE has MIP verifiers which run in time Õ(n). 
    more » « less
  3. Santhanam, Rahul (Ed.)
    Depth-3 circuit lower bounds and k-SAT algorithms are intimately related; the state-of-the-art Σ^k_3-circuit lower bound (Or-And-Or circuits with bottom fan-in at most k) and the k-SAT algorithm of Paturi, Pudlák, Saks, and Zane (J. ACM'05) are based on the same combinatorial theorem regarding k-CNFs. In this paper we define a problem which reveals new interactions between the two, and suggests a concrete approach to significantly stronger circuit lower bounds and improved k-SAT algorithms. For a natural number k and a parameter t, we consider the Enum(k, t) problem defined as follows: given an n-variable k-CNF and an initial assignment α, output all satisfying assignments at Hamming distance t(n) of α, assuming that there are no satisfying assignments of Hamming distance less than t(n) of α. We observe that an upper bound b(n, k, t) on the complexity of Enum(k, t) simultaneously implies depth-3 circuit lower bounds and k-SAT algorithms: - Depth-3 circuits: Any Σ^k_3 circuit computing the Majority function has size at least binom(n,n/2)/b(n, k, n/2). - k-SAT: There exists an algorithm solving k-SAT in time O(∑_{t=1}^{n/2}b(n, k, t)). A simple construction shows that b(n, k, n/2) ≥ 2^{(1 - O(log(k)/k))n}. Thus, matching upper bounds for b(n, k, n/2) would imply a Σ^k_3-circuit lower bound of 2^Ω(log(k)n/k) and a k-SAT upper bound of 2^{(1 - Ω(log(k)/k))n}. The former yields an unrestricted depth-3 lower bound of 2^ω(√n) solving a long standing open problem, and the latter breaks the Super Strong Exponential Time Hypothesis. In this paper, we propose a randomized algorithm for Enum(k, t) and introduce new ideas to analyze it. We demonstrate the power of our ideas by considering the first non-trivial instance of the problem, i.e., Enum(3, n/2). We show that the expected running time of our algorithm is 1.598ⁿ, substantially improving on the trivial bound of 3^{n/2} ≃ 1.732ⁿ. This already improves Σ^3_3 lower bounds for Majority function to 1.251ⁿ. The previous bound was 1.154ⁿ which follows from the work of Håstad, Jukna, and Pudlák (Comput. Complex.'95). By restricting ourselves to monotone CNFs, Enum(k, t) immediately becomes a hypergraph Turán problem. Therefore our techniques might be of independent interest in extremal combinatorics. 
    more » « less
  4. null (Ed.)
    Finding locally optimal solutions for MAX-CUT and MAX- k -CUT are well-known PLS-complete problems. An instinctive approach to finding such a locally optimum solution is the FLIP method. Even though FLIP requires exponential time in worst-case instances, it tends to terminate quickly in practical instances. To explain this discrepancy, the run-time of FLIP has been studied in the smoothed complexity framework. Etscheid and Röglin (ACM Transactions on Algorithms, 2017) showed that the smoothed complexity of FLIP for max-cut in arbitrary graphs is quasi-polynomial. Angel, Bubeck, Peres, and Wei (STOC, 2017) showed that the smoothed complexity of FLIP for max-cut in complete graphs is ( O Φ 5 n 15.1 ), where Φ is an upper bound on the random edge-weight density and Φ is the number of vertices in the input graph. While Angel, Bubeck, Peres, and Wei’s result showed the first polynomial smoothed complexity, they also conjectured that their run-time bound is far from optimal. In this work, we make substantial progress toward improving the run-time bound. We prove that the smoothed complexity of FLIP for max-cut in complete graphs is O (Φ n 7.83 ). Our results are based on a carefully chosen matrix whose rank captures the run-time of the method along with improved rank bounds for this matrix and an improved union bound based on this matrix. In addition, our techniques provide a general framework for analyzing FLIP in the smoothed framework. We illustrate this general framework by showing that the smoothed complexity of FLIP for MAX-3-CUT in complete graphs is polynomial and for MAX - k - CUT in arbitrary graphs is quasi-polynomial. We believe that our techniques should also be of interest toward showing smoothed polynomial complexity of FLIP for MAX - k - CUT in complete graphs for larger constants k . 
    more » « less
  5. Aichholzer, Oswin; Wang, Haitao (Ed.)
    We present new results on 2- and 3-hop spanners for geometric intersection graphs. These include improved upper and lower bounds for 2- and 3-hop spanners for many geometric intersection graphs in ℝ^d. For example, we show that the intersection graph of n balls in ℝ^d admits a 2-hop spanner of size O^*(n^{3/2 - 1/(2(2⌊d/2⌋ + 1))}) and the intersection graph of n fat axis-parallel boxes in ℝ^d admits a 2-hop spanner of size O(n log^{d+1}n). Furthermore, we show that the intersection graph of general semi-algebraic objects in ℝ^d admits a 3-hop spanner of size O^*(n^{3/2 - 1/(2(2D-1))}), where D is a parameter associated with the description complexity of the objects. For such families (or more specifically, for tetrahedra in ℝ³), we provide a lower bound of Ω(n^{4/3}). For 3-hop and axis-parallel boxes in ℝ^d, we provide the upper bound O(n log ^{d-1}n) and lower bound Ω(n ({log n}/{log log n})^{d-2}). 
    more » « less