skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Planning and Acting While the Clock Ticks
Standard temporal planning assumes that planning takes place offline, and then execution starts at time 0. Recently, situated temporal planning was introduced, where planning starts at time 0, and execution occurs after planning terminates. Situated temporal planning reflects a more realistic scenario where time passes during planning. However, in situated temporal planning a complete plan must be generated before any action is executed. In some problems with time pressure, timing is too tight to complete planning before the first action must be executed. For example, an autonomous car that has a truck backing towards it should probably move out of the way now, and plan how to get to its destination later. In this paper, we propose a new problem setting: concurrent planning and execution, in which actions can be dispatched (executed) before planning terminates. Unlike previous work on planning and execution, we must handle wall clock deadlines that affect action applicability and goal achievement (as in situated planning) while also supporting dispatching actions before a complete plan has been found. We extend previous work on metareasoning for situated temporal planning to develop an algorithm for this new setting. Our empirical evaluation shows that when there is strong time pressure, our approach outperforms situated temporal planning.  more » « less
Award ID(s):
2008594
PAR ID:
10546016
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
AAAI Press
Date Published:
Journal Name:
Proceedings of the International Conference on Automated Planning and Scheduling
Volume:
34
ISSN:
2334-0835
Page Range / eLocation ID:
95 to 103
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Agents that plan and act in the real world must deal with the fact that time passes as they are planning. When timing is tight, there may be insufficient time to complete the search for a plan before it is time to act. By commencing execution before search concludes, one gains time to search by making planning and execution concurrent. However, this incurs the risk of making incorrect action choices, especially if actions are irreversible. This tradeoff between opportunity and risk is the problem addressed in this paper. Our main contribution is to formally define this setting as an abstract metareasoning problem. We find that the abstract problem is intractable. However, we identify special cases that are solvable in polynomial time, develop greedy solution algorithms, and, through tests on instances derived from search problems, find several methods that achieve promising practical performance. This work lays the foundation for a principled time-aware executive that concurrently plans and executes. 
    more » « less
  2. Task and motion planning represents a powerful set of hybrid planning methods that combine reasoning over discrete task domains and continuous motion generation. Traditional reasoning necessitates task domain models and enough information to ground actions to motion planning queries. Gaps in this knowledge often arise from sources like occlusion or imprecise modeling. This work generates task and motion plans that include actions cannot be fully grounded at planning time. During execution, such an action is handled by a provided human designed or learned closed-loop behavior. Execution combines offline planned motions and online behaviors till reaching the task goal. Failures of behaviors are fed back as constraints to find new plans. Forty real-robot trials and motivating demonstrations are performed to evaluate the proposed framework and compare against state-of-the-art. Results show faster execution time, less number of actions, and more success in problems where diverse gaps arise. The experiment data is shared for researchers to simulate these settings. The work shows promise in expanding the applicable class of realistic partially grounded problems that robots can address. 
    more » « less
  3. Narrative planning generates a sequence of actions which must achieve the author's goal for the story and must be composed only of actions that make sense for the characters who take them. A causally necessary action is one that would make the plan impossible to execute if it were left out. We hypothesize that action sequences which are solutions to narrative planning problems are more likely to feature causally necessary actions than those which are not solutions. In this paper, we show that prioritizing sequences with more causally necessary actions can lead to solutions faster in ten benchmark story planning problems. 
    more » « less
  4. null (Ed.)
    In many real-world scenarios, the time it takes for a mobile agent, e.g., a robot, to move from one location to another may vary due to exogenous events and be difficult to predict accurately. Planning in such scenarios is challenging, especially in the context of Multi-Agent Pathfinding (MAPF), where the goal is to find paths to multiple agents and temporal coordination is necessary to avoid collisions. In this work, we consider a MAPF problem with this form of time uncertainty, where we are only given upper and lower bounds on the time it takes each agent to move. The objective is to find a safe solution, which is a solution that can be executed by all agents and is guaranteed to avoid collisions. We propose two complete and optimal algorithms for finding safe solutions based on well-known MAPF algorithms, namely, A* with Operator Decomposition (A* + OD) and Conflict-Based Search (CBS). Experimentally, we observe that on several standard MAPF grids the CBS-based algorithm performs better. We also explore the option of online replanning in this context, i.e., modifying the agents' plans during execution, to reduce the overall execution cost. We consider two online settings: (a) when an agent can sense the current time and its current location, and (b) when the agents can also communicate seamlessly during execution. For each setting, we propose a replanning algorithm and analyze its behavior theoretically and empirically. Our experimental evaluation confirms that indeed online replanning in both settings can significantly reduce solution cost. 
    more » « less
  5. null (Ed.)
    Abstract Quadrotors can provide services such as infrastructure inspection and search-and-rescue, which require operating autonomously in cluttered environments. Autonomy is typically achieved with receding-horizon planning, where a short plan is executed while a new one is computed, because sensors receive limited information at any time. To ensure safety and prevent robot loss, plans must be verified as collision free despite uncertainty (e.g, tracking error). Existing spline-based planners dilate obstacles uniformly to compensate for uncertainty, which can be conservative. On the other hand, reachability-based planners can include trajectory-dependent uncertainty as a function of the planned trajectory. This work applies Reachability-based Trajectory Design (RTD) to plan quadrotor trajectories that are safe despite trajectory-dependent tracking error. This is achieved by using zonotopes in a novel way for online planning. Simulations show aggressive flight up to 5 m/s with zero crashes in 500 cluttered, randomized environments. 
    more » « less