We develop a forensic-like framework for network structural characterization based on an analysis of their nonlinear response to mechanical deformation. For model networks, this methodology provides information about the strand degree of polymerization between cross-links, the effective cross-link functionality, the contribution of loops and entanglements to network elasticity, as well as the fraction of stress-supporting strands. For networks with trapped entanglements, we identify a transition from cross-link-controlled to entanglement-controlled network elasticity with increasing degree of polymerization of network strands between cross-links and show how specific features of this transition are manifested in changes of entanglement and structural shear moduli characterizing different modes of network deformation. In particular, this cross-link-to-entanglement transition results in saturation of the network shear modulus at small deformations and renormalization of the degree of polymerization of the effective network strands determining nonlinear elastic response in the strongly entangled networks. The developed approach enables the classification of networks according to their topology and effectiveness of stress distribution between network strands.
more »
« less
This content will become publicly available on July 1, 2025
When the Poisson Ratio of Polymer Networks and Gels Is Larger Than 0.5?
We use coarse-grained molecular dynamics simulations to study deformation of networks and gels of linear and brush strands in both linear and nonlinear deformation regimes under constant pressure conditions. The simulations show that the Poisson ratio of networks and gels could exceed 0.5 in the nonlinear deformation regime. This behavior is due to the ability of the network and gel strands to sustain large reversible deformation, which, in combination with the finite strand extensibility results in strand alignment and monomer density, increases with increasing strand elongation. We developed a nonlinear network and gel deformation model which defines conditions for the Poisson ratio to exceed 0.5. The model predictions are in good agreement with the simulation results.
more »
« less
- PAR ID:
- 10546068
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Gels
- Volume:
- 10
- Issue:
- 7
- ISSN:
- 2310-2861
- Page Range / eLocation ID:
- 463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Slide-ring gels are polymer networks with cross-links that can slide along the chains. In contrast to conventional unentangled networks with cross-links fixed along the chains, the slide-ring networks are strain-softening and distribute tension much more uniformly between their strands due to the so-called “pulley effect”. The sliding of cross-links also reduces the elastic modulus in comparison with the modulus of conventional networks with the same number density of cross-links and elastic strands. We develop a single-chain model to account for the redistribution of monomers between network strands of a primary chain. This model takes into account both the pulley effect and fluctuations in the number of monomers per network strand. The pulley effect leads to modulus reduction and uniform tension redistribution between network strands, while fluctuations in the number of strand monomers dominate the strain-softening, the magnitude of which decreases upon network swelling and increases upon deswelling.more » « less
-
The utility and lifetime of materials made from polymer networks, including hydrogels, depend on their capacity to stretch and resist tearing. In gels and elastomers, those mechanical properties are often limited by the covalent chemical structure of the polymer strands between cross-links, which is typically fixed during the material synthesis. We report polymer networks in which the constituent strands lengthen through force-coupled reactions that are triggered as the strands reach their nominal breaking point. In comparison with networks made from analogous control strands, reactive strand extensions of up to 40% lead to hydrogels that stretch 40 to 50% further and exhibit tear energies that are twice as large. The enhancements are synergistic with those provided by double-network architectures and complement other existing toughening strategies.more » « less
-
We present a modified Lake–Thomas theory that accounts for the molecular details of network connectivity upon crack propagation in polymer networks. This theory includes not only the energy stored in the breaking network strands (bridging strands) but also the energy stored in the tree-like structure of the strands connecting the bridging strands to the network continuum, which remains intact as the crack propagates. The energy stored in each of the generations of this tree depends nonmonotonically on the generation index due to the nonlinear elasticity of the stretched network strands. Further, the energy required to break a single bridging strand is not necessarily dominated by the energy stored in the bridging strand itself but in the higher generations of the tree. We describe the effect of mechanophores with stored length on the energy stored in the tree-like structure. In comparison with the “strong” mechanophores that can only be activated in the bridging strand, “weak” mechanophores that can be activated both in the bridging strand and in other generations could provide more energy dissipation due to their larger contribution to higher generations of the tree.more » « less
-
The development of biomolecular stimuli-responsive hydrogels is important for biomimetic structures, soft robots, tissue engineering, and drug delivery. DNA polymerization gels are a new class of soft materials composed of polymer gel backbones with DNA duplex crosslinks that can be swollen by sequential strand displacement using hairpin-shaped DNA strands. The extensive swelling can be tuned using physical parameters such as salt concentration and biomolecule design. Previously, DNA polymerization gels have been used to create shape-changing gel automata with a large design space and high programmability. Here we systematically investigate how the swelling response of DNA polymerization gels can be tuned by adjusting the design and concentration of DNA crosslinks in the hydrogels or DNA hairpin triggers, and the ionic strength of the solution in which swelling takes place. We also explore the effect hydrogel size and shape have on the swelling response. Tuning these variables can alter the swelling rate and extent across a broad range and provide a quantitative connection between biochemical reactions and macroscopic material behaviour.more » « less