We present V -band photometry of the 20 000 brightest asteroids using data from the All-Sky Automated Survey for Supernovae (ASAS-SN) between 2012 and 2018. We were able to apply the convex inversion method to more than 5000 asteroids with more than 60 good measurements in order to derive their sidereal rotation periods, spin axis orientations, and shape models. We derive unique spin state and shape solutions for 760 asteroids, including 163 new determinations. This corresponds to a success rate of about 15%, which is significantly higher than the success rate previously achieved using photometry from surveys. We derive the first sidereal rotation periods for additional 69 asteroids. We find good agreement in spin periods and pole orientations for objects with prior solutions. We obtain a statistical sample of asteroid physical properties that is sufficient for the detection of several previously known trends, such as the underrepresentation of slow rotators in current databases, and the anisotropic distribution of spin orientations driven by the nongravitational forces. We also investigate the dependence of spin orientations on the rotation period. Since 2018, ASAS-SN has been observing the sky with higher cadence and a deeper limiting magnitude, which will lead to many more new solutions in just a few years.
more »
« less
Asteroid Period Solutions from Combined Dense and Sparse Photometry
Abstract Deriving high-quality light curves for asteroids and other periodic sources from survey data is challenging owing to many factors, including the sparsely sampled observational record and diurnal aliasing, which is a signature imparted into the periodic signal of a source that is a function of the observing schedule of ground-based telescopes. In this paper we examine the utility of combining asteroid observational records from the Zwicky Transient Facility and the Transiting Exoplanet Survey Satellite, which are the ground- and space-based facilities, respectively, to determine to what degree the data from the space-based facility can suppress diurnal aliases. Furthermore, we examine several optimizations that are used to derive the rotation periods of asteroids, which we then compare to the reported rotation periods in the literature. Through this analysis we find that we can reliably derive the rotation periods for ∼85% of our sample of 222 objects that are also reported in the literature and that the remaining ∼15% are difficult to reliably derive, as many are asteroids that are insufficiently elongated, which produces a light curve with an insufficient amplitude and, consequently, an incorrect rotation period. We also investigate a binary classification method that biases against reporting incorrect rotation periods. We conclude the paper by assessing the utility of using other ground- or space-based facilities as companion telescopes to the forthcoming Rubin Observatory.
more »
« less
- PAR ID:
- 10546140
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 168
- Issue:
- 4
- ISSN:
- 0004-6256
- Format(s):
- Medium: X Size: Article No. 181
- Size(s):
- Article No. 181
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present a survey for photometric variability in young, low-mass brown dwarfs with the Spitzer Space Telescope. The 23 objects in our sample show robust signatures of youth and share properties with directly imaged exoplanets. We present three new young objects: 2MASS J03492367+0635078, 2MASS J09512690−8023553, and 2MASS J07180871−6415310. We detect variability in 13 young objects, and find that young brown dwarfs are highly likely to display variability across the L2–T4 spectral type range. In contrast, the field dwarf variability occurrence rate drops for spectral types >L9. We examine the variability amplitudes of young objects and find an enhancement in maximum amplitudes compared to field dwarfs. We speculate that the observed range of amplitudes within a spectral type may be influenced by secondary effects such as viewing inclination and/or rotation period. We combine our new rotation periods with the literature to investigate the effects of mass on angular momentum evolution. While high-mass brown dwarfs (>30MJup) spin up over time, the same trend is not apparent for lower-mass objects (<30MJup), likely due to the small number of measured periods for old, low-mass objects. The rotation periods of companion brown dwarfs and planetary-mass objects are consistent with those of isolated objects with similar ages and masses, suggesting similar angular momentum histories. Within the AB Doradus group, we find a high-variability occurrence rate and evidence for common angular momentum evolution. The results are encouraging for future variability searches in directly imaged exoplanets with facilities such as the James Webb Space Telescope and 30 m telescopes.more » « less
-
Abstract We present here the design, architecture, and first data release for the Solar System Notification Alert Processing System (SNAPS). SNAPS is a solar system broker that ingests alert data from all-sky surveys. At present, we ingest data from the Zwicky Transient Facility (ZTF) public survey, and we will ingest data from the forthcoming Legacy Survey of Space and Time (LSST) when it comes online. SNAPS is an official LSST downstream broker. In this paper we present the SNAPS design goals and requirements. We describe the details of our automatic pipeline processing in which the physical properties of asteroids are derived. We present SNAPShot1, our first data release, which contains 5,458,459 observations of 31,693 asteroids observed by ZTF from 2018 July to 2020 May. By comparing a number of derived properties for this ensemble to previously published results for overlapping objects we show that our automatic processing is highly reliable. We present a short list of science results, among many that will be enabled by our SNAPS catalog: (1) we demonstrate that there are no known asteroids with very short periods and high amplitudes, which clearly indicates that in general asteroids in the size range 0.3–20 km are strengthless; (2) we find no difference in the period distributions of Jupiter Trojan asteroids, implying that the L4 and L5 clouds have different shape distributions; and (3) we highlight several individual asteroids of interest. Finally, we describe future work for SNAPS and our ability to operate at LSST scale.more » « less
-
Abstract The UKIRT Hemisphere Survey covers the northern sky in the infrared from 0° to 60° decl. Current data releases include bothJandKbands, withH-band data forthcoming. Here, we present a novel pipeline to recover asteroids from this survey data. We recover 26,138 reliable observations, corresponding to 23,399 unique asteroids, from these public data. We measureJ–Kcolors for 601 asteroids. Our survey extends about 2 mag deeper than the Two-Micron All-Sky Survey. We find that our small inner main belt objects are less red than larger inner belt objects, perhaps because smaller asteroids are collisionally younger, with surfaces that have been less affected by space weathering. In the middle and outer main belts, we find our small asteroids to be redder than larger objects in their same orbits, possibly due to observational bias or a disproportionate population of very red objects among these smaller asteroids. Future work on this project includes extracting moving object measurements fromH-andY-band data when it becomes available.more » « less
-
Abstract Simultaneously cycling space weather parameters may show high correlations even if there is no immediate relationship between them. We successfully remove diurnal cycles using spectral subtraction, and remove both diurnal and longer cycles (e.g., the 27 days solar cycle) with a difference transformation. Other methods of diurnal cycle removal (daily averaging, moving averages [MAs], and simpler spectral subtraction using regression) are less successful at removing cycles. We apply spectral subtraction (a finite impulse response equiripple bandstop filter) to hourly electron flux (Los Alamos National Laboratory satellite data) and a ground‐based ULF index to remove a 24 hr noise signal. This results in smoother time series appropriate for short‐term (approximately < 1 week) correlation and observational studies. However, spectral subtraction may not remove longer cycles such as the 27 days and 11 yr solar cycles. A differencing transformation (yt–yt−24) removes not only the 24 hr noise signal but also the 27 days solar cycle, autocorrelation, and longer trends. This results in a low correlation between electron flux and the ULF index over long periods of time (maximum of 0.1). Correlations of electron flux and the ULF index with solar wind velocity (differenced atyt–yt−1) are also lower than previously reported (≤0.1). An autoregressive, MA transfer function model (ARIMAX) shows that there are significant cumulative effects of solar wind velocity on ULF activity over long periods, but correlations of velocity and ULF waves with flux are only seen over shorter time spans of more homogeneous geomagnetic activity levels.more » « less
An official website of the United States government
