Abstract Spreading and mixing are complementary processes that promote reaction of two reactive aqueous solutes present in contiguous plumes in groundwater. Spreading reconfigures the plume geometry, elongating the interface between the plumes, while mixing increases the volume of aquifer occupied by each plume, bringing the solute molecules together to react. Since reaction only occurs where the two solute plumes are in contact with each other, local mechanisms that drive flow and transport near the interface between the plumes control the amount of reaction. This work uses local characteristics of the plumes and the flow field near the plume interface to analyze the relative contributions of pore‐scale mixing and mechanical dispersion to instantaneous, irreversible, bimolecular reaction in a homogeneous aquifer with active spreading caused by radial flow from a well. Two solutes are introduced in sequence at the well, creating concentric circular plumes. We allow for incomplete mixing of the solutes in the pore space, by modeling the pore space as a segregated compartment and a mixed compartment with first‐order mass transfer between the two compartments. We develop semi‐analytical expressions for concentrations of the solutes in both compartments. We found that the relative contribution of mechanical dispersion to reaction increases over time and also increases due to increases in the Peclet number, in the relative source concentration of the chasing solute, and in the mass transfer rate from the segregated compartment to the mixed compartment of the pore space.
more »
« less
Compartmental exchange regulates steady states and stochastic switching of a phosphorylation network
The phosphoregulation of proteins with multiple phosphorylation sites is governed by biochemical reaction networks that can exhibit multistable behavior. However, the behavior of such networks is typically studied in a single reaction volume, while cells are spatially organized into compartments that can exchange proteins. In this work, we use stochastic simulations to study the impact of compartmentalization on a two-site phosphorylation network. We characterize steady states and fluctuation-driven transitions between them as a function of the rate of protein exchange between two compartments. Surprisingly, the average time spent in a state before stochastically switching to another depends nonmonotonically on the protein exchange rate, with the most frequent switching occurring at intermediate exchange rates. At sufficiently small exchange rates, the state of the system and mean switching time are controlled largely by fluctuations in the balance of enzymes in each compartment. This leads to negatively correlated states in the compartments. For large exchange rates, the two compartments behave as a single effective compartment. However, when the compartmental volumes are unequal, the behavior differs from a single compartment with the same total volume. These results demonstrate that exchange of proteins between distinct compartments can regulate the emergent behavior of a common signaling motif.
more »
« less
- Award ID(s):
- 1753017
- PAR ID:
- 10546236
- Publisher / Repository:
- Cell Press
- Date Published:
- Journal Name:
- Biophysical Journal
- Volume:
- 123
- Issue:
- 5
- ISSN:
- 0006-3495
- Page Range / eLocation ID:
- 598 to 609
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hydrostatic pressure together with the temperature is an important environmental variable that plays an essential role in biological adaptation of extremophilic organisms. In particular, the effects of hy-drostatic pressure on the rates of the protein folding/unfolding reaction are determined by the magni-tude and sign of the activation volume changes. Here we provide computational description of the ac-tivation volume changes for folding/unfolding reaction, and compare them with the experimental data for six different globular proteins. We find that the volume of the transition state ensemble is always in-between the folded and unfolded states. Based on this, we conclude that hydrostatic pressure will invariably slow down protein folding and accelerate protein unfolding.more » « less
-
null (Ed.)Abstract This paper focuses on the derivation and simulation of mathematical models describing new plasma fraction in blood for patients undergoing simultaneous extracorporeal membrane oxygenation and therapeutic plasma exchange. Models for plasma exchange with either veno-arterial or veno-venous extracorporeal membrane oxygenation are considered. Two classes of models are derived for each case, one in the form of an algebraic delay equation and another in the form of a system of delay differential equations. In special cases, our models reduce to single compartment ones for plasma exchange that have been validated with experimental data (Randerson et al., 1982, Artif. Organs, 6, 43–49). We also show that the algebraic differential equations are forward Euler discretizations of the delay differential equations, with timesteps equal to transit times through model compartments. Numerical simulations are performed to compare different model types, to investigate the impact of plasma device port switching on the efficiency of the exchange process, and to study the sensitivity of the models to their parameters.more » « less
-
Translocation of proteins is correlated with structural fluctuations that access conformational states higher in free energy than the folded state. We use electric fields at the solid-state nanopore to control the relative free energy and occupancy of different protein conformational states at the single-molecule level. The change in occupancy of different protein conformations as a function of electric field gives rise to shifts in the measured distributions of ionic current blockades and residence times. We probe the statistics of the ionic current blockades and residence times for three mutants of the -repressor family in order to determine the number of accessible conformational states of each mutant and evaluate the ruggedness of their free energy landscapes. Translocation becomes faster at higher electric fields when additional flexible conformations are available for threading through the pore. At the same time, folding rates are not correlated with ease of translocation; a slow-folding mutant with a low-lying intermediate state translocates faster than a faster-folding two-state mutant. Such behavior allows us to distinguish among protein mutants by selecting for the degree of current blockade and residence time at the pore. Based on these findings, we present a simple free energy model that explains the complementary relationship between folding equilibrium constants and translocation rates.more » « less
-
Living cells segregate molecules and reactions in various subcellular compartments known as organelles. Spatial organization is likely essential for expanding the biochemical functions of synthetic reaction systems, including artificial cells. Many studies have attempted to mimic organelle functions using lamellar membrane-bound vesicles. However, vesicles typically suffer from highly limited transport across the membranes and an inability to mimic the dense membrane networks typically found in organelles such as the endoplasmic reticulum. Here, we describe programmable synthetic organelles based on highly stable nonlamellar sponge phase droplets that spontaneously assemble from a single-chain galactolipid and nonionic detergents. Due to their nanoporous structure, lipid sponge droplets readily exchange materials with the surrounding environment. In addition, the sponge phase contains a dense network of lipid bilayers and nanometric aqueous channels, which allows different classes of molecules to partition based on their size, polarity, and specific binding motifs. The sequestration of biologically relevant macromolecules can be programmed by the addition of suitably functionalized amphiphiles to the droplets. We demonstrate that droplets can harbor functional soluble and transmembrane proteins, allowing for the colocalization and concentration of enzymes and substrates to enhance reaction rates. Droplets protect bound proteins from proteases, and these interactions can be engineered to be reversible and optically controlled. Our results show that lipid sponge droplets permit the facile integration of membrane-rich environments and self-assembling spatial organization with biochemical reaction systems.more » « less