skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spectral emissivities and temperatures of burning iron as single particles or groups of particles
This manuscript reports on the combustion of powdered iron, for the purpose of utilizing it as an environmentally friendly circular energy carrier. The conducted research investigated the spectral emissivity and temperature of iron particles, burned either individually or in groups. Combustion experiments were conducted under high heating rates in an externally-heated drop tube furnace. The pressure was atmospheric and the axial temperature was nearly-constant at ~1350 K. The oxidizer gas contained 15-100% oxygen in nitrogen diluent. Iron particles were sieve-classified in the 44-53 µm range. Results showed that, depending on the oxygen concentration, and consequently the particle temperature, the average spectral emissivities of single burning particles varied between 0.18 and 0.46, in the 600-1000 nm wavelength range. Corresponding temperatures of single particles varied between 2300 K and 2800 K, increasing with increasing oxygen concentration in the gas. In the case of groups of iron particles burning in air at different particle number densities, average spectral emissivities were found to be in the range of 0.42-0.45, with the upper value associated with denser particle clouds. Corresponding peak temperatures of particle burning in groups were found to be in the range of 2160 K to 2100 K, with the lower value attributed to denser particle clouds.  more » « less
Award ID(s):
2324411
PAR ID:
10546241
Author(s) / Creator(s):
; ; ;
Editor(s):
Nimmo, Bill
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Fuel
Volume:
375
Issue:
C
ISSN:
0016-2361
Page Range / eLocation ID:
132537
Subject(s) / Keyword(s):
Emissivity Combustion Iron Spectrometer Temperature
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Egolfopoulos, Fokion (Ed.)
    Powdered iron is being investigated for its potential use as a carbon-free fuel due to its ability to burn heterogeneously and produce oxide particles, which can be collected, reduced back to iron and burned again. However, high temperature oxidation of iron particles can induce partial vaporization/decomposition and evolution of nanometric iron oxide particles. To investigate the formation process of nanoparticles in iron combustion, iron powders (consisting of spheroidal 45–53 μm particles) were injected in an electrically-heated drop tube furnace, operated at a maximum gas temperature of 1375 K, where they experienced high heating rates (104 K/s). The particles reacted with oxygen at concentrations of 15, 21, 35, 50 and 100 % by volume in nitrogen diluent gas. Particles ignited and burned brightly, with peak temperatures reaching 2344–2884 K, depending on the oxygen concentration. The observed distribution of the combustion products of iron was bimodal in size and composition, containing (a) dark gray spherical micrometric particles bigger than their iron particle precursors composed of both magnetite and hematite, and (b) highly agglomerated orange-reddish nanometric particles composed of hematite. The mass fraction of nanometric particles accounted for up to 1.7–7.4 % of the collected products, increasing with the oxygen partial pressure. The nanometric particles were spherules, 30–100 nm in diameter. However, they were highly agglomerated with aggregate aerodynamic diameters peaking at 180–560 nm. The yield of nanoparticles increased with increasing oxygen concentration in the furnace. A heuristic model was used to investigate the impact and sensitivity of various strategies for modeling evaporation, aiming to identify key mechanisms that limit the evaporation rate. This study highlights that understanding the type of liquid at the particle surface is crucial, as evaporation can increase significantly with a homogeneous liquid Fe-O particle compared to a core–shell morphology. Additionally, the analysis suggests that evaporation likely occurs in an intermediate regime where gaseous Fe-containing species oxidize in the boundary layer. Understanding these boundary layer processes is essential for accurately modeling the evaporation rate while maintaining computational efficiency. 1. 
    more » « less
  2. Egolfopoulos, Fokion (Ed.)
    This research focused on the size and overall porosity (pore volume) of carbonaceous chars, originating from high-heating rates and high-temperature pyrolysis and/or combustion of biomass. Emphasis was given to torrefied biomass chars. First, the porosity of char residues of single biomass particles of known mass was determined, based on an assumed value of skeletal density and by comparing experimentally observed temperature-time histories with numerical predictions of their burnout times. The average char porosities (effective porosities) of several raw and torrefied biomass particles were calculated to be in the range of 92–95%. Thereafter, these deduced porosity values were input again to the model to calculate the size of chars of other biomass particle precursors, whose initial size and mass were not known. Such biomass particles were sieve-classified to different nominal size ranges. This time, besides the porosity, representative time-temperature profiles of biomass particles in the aforementioned size ranges were also input to the model. Biomass particles are highly irregular with large aspect ratios and, in many cases, they melt and spherodize under high heating rates and elevated temperatures. Knowledge of the initial size of the chars, upon extinction of the volatile flames, is needed for modeling their heterogeneous combustion phase. For this purpose, numerical predictions were in general agreement with measurements of char size obtained from both scanning electron microscopy of captured chars and real-time high-speed, high- magnification cinematographic observations of their combustion. Results showed that the generated chars of the examined biomass types were highly porous with large cavities. The average initial dimension of the chars, upon rapid pyrolysis, was in the range of 50–60% the mid-value of the mesh size of the sieves used to size-classify their highly irregular parent biomass particles. 
    more » « less
  3. Environmental contextIron-containing combustion particles are likely to contribute to environmental iron deposition, while atmospheric acidic processing of such particles can promote their dissolution. Here we report the surface-mediated dissolution of iron from ashes generated by biomass burning power plants and kilns. Examination of the dissolution process at several environmentally relevant pHs, suggests that pH has little impact on the fraction of bioavailable Fe(II) that dissolves into the aqueous phase, although Fe(III) is heavily pH dependent. RationaleAnthropogenic combustion particles, such as ash produced in power plants or kilns, are byproducts with limited use that accumulate in large deposits and become materials of environmental concern. While stored, these particles can be carried by winds into the atmosphere or into soil or near water bodies. Recent studies suggest that a fraction of metals present in the environment come from combustion particles. MethodologyIn this study, we carry out a comparative study of iron dissolution and speciation from two different combustion particles: bottom ash from a biomass-fired power plant (BA) and lime kiln dust (LKD). Samples were fully characterised and their iron leaching was investigated in aqueous suspensions under environmentally relevant acidic conditions. Iron analysis and speciation was carried out calorimetrically. ResultsFor the combustion particles examined, the fraction of bioavailable Fe2+ is lower than Fe3+. The solubility of Fe3+ is highly dependent on pH, dropping significantly at pHs higher than 3. On the other hand, the solubility of Fe2+ from both BA and LKD was found to be relatively constant over the range of pH investigated. DiscussionIron availability from combustion particles with similar mineralogy is driven by the particle’s surface properties. While iron from LKD dissolves faster than that from BA, the initial rate of dissolution of iron remains statistically constant at pHs relevant for the atmospheric aerosol deliquescent layer, decreasing at pHs above 3. This work provides insight into the ability of combustion particles to provide iron micronutrients under different environmentally relevant acidic conditions. 
    more » « less
  4. Biomass burning organic aerosol (BBOA) is one of the largest sources of organics in the atmosphere. Mineral dust and biomass burning smoke frequently co-exist in the same atmospheric environment. Common biomass burning compounds, such as dihydroxybenzenes and their derivatives, are known to produce light-absorbing, water-insoluble polymeric particles upon reaction with soluble Fe( iii ) under conditions characteristic of aerosol liquid water. However, such reactions have not been tested in realistic mixtures of BBOA compounds. In this study, model organic aerosol (OA), meant to replicate BBOA from smoldering fires, was generated through the pyrolysis of Canary Island pine needles in a tube furnace at 300, 400, 500, 600, 700, and 800 °C in nitrogen gas, and the water-soluble fractions were reacted with iron chloride under dark, acidic conditions. We utilized spectrophotometry to monitor the reaction progress. For OA samples produced at lower temperatures (300 and 400 °C), particles (P300 and P400) formed in solution, were syringe filtered, and extracted in organic solvents. Analysis was conducted with ultrahigh pressure liquid chromatography coupled to a photodiode array spectrophotometer and a high-resolution mass spectrometer (UHPLC-PDA-HRMS). For OA samples formed at higher pyrolysis temperatures (500–800 °C), water-insoluble, black particles (P500–800) formed in solution. In contrast to P300 and P400, P500–800 were not soluble in common solvents. Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) and transmission electron microscopy (TEM) were used to image P600 and determine bulk elemental composition. Electron microscopy revealed that P600 had fractal morphology, reminiscent of soot particles, and contained no detectable iron. These results suggest that light-absorbing aerosol particles can be produced from Fe( iii )-catalyzed reactions in aging BBOA plumes produced from smoldering combustion in the absence of any photochemistry. This result has important implications for understanding the direct and indirect effects of aged BBOA on climate. 
    more » « less
  5. Abstract. Aerosol liquid water (ALW) is a unique reaction medium,but its chemistry is poorly understood. For example, little is known of photooxidant concentrations – including hydroxyl radicals (OH), singlet molecular oxygen (1O2*), and oxidizing triplet excited states of organic matter (3C*) – even though they likely drive much of ALW chemistry. Due to the very limited water content of particles, it is difficult to quantify oxidant concentrations in ALW directly. To predict these values, we measured photooxidant concentrations in illuminated aqueous particle extracts as a function of dilution and used the resulting oxidant kinetics to extrapolate to ALW conditions. We prepared dilution series from two sets of particles collected in Davis, California: one from winter (WIN)and one from summer (SUM). Both periods are influenced by biomass burning,with dissolved organic carbon (DOC) in the extracts ranging from 10 to 495 mg C L−1. In the winter sample, the OH concentration is independent of particle mass concentration, with an average value of 5.0 (± 2.2) × 10−15 M, while in summer OH increases with DOC in the range (0.4–7.7) × 10−15 M. In both winter and summer samples, 3C* concentrations increase rapidly with particle mass concentrations in the extracts and then plateau under more concentrated conditions, with a range of (0.2–7) × 10−13 M.WIN and SUM have the same range of 1O2* concentrations, (0.2–8.5) × 10−12 M, but in WIN the 1O2* concentration increases linearly with DOC, while in SUM 1O2* approaches a plateau. We next extrapolated the relationships of oxidant formation rates and sinks as a function of particle mass concentration from our dilute extracts to the much more concentrated condition of aerosol liquid water. Predicted OH concentrations in ALW (including mass transport of OH from the gas phase) are (5–8) × 10−15 M, similar to those in fog/cloud waters. In contrast, predicted concentrations of 3C* and1O2* in ALW are approximately 10 to 100 times higher than in cloud/fogs, with values of (4–9) × 10−13 M and (1–5) × 10−12 M, respectively. Although OH is often considered the main sink for organic compounds in the atmospheric aqueous phase, the much higher concentrations of 3C* and 1O2* in aerosol liquid water suggest these photooxidants will be more important sinks for many organics in particle water. 
    more » « less