skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2324411

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Metghalchi, Hameed (Ed.)
    Abstract As the effects of climate change become a greater threat, the need for a viable source of sustainable energy grows daily. Iron powder has been proposed as a potential alternative to conventional fossil fuels. Pulverized iron can be burned similarly to coal. Unlike coal, however, iron combustion does not create CO2 as a by-product. It also produces a negligible amount of NOx. Iron is also abundant in the Earth's crust, has a low explosion range, possesses a competitive energy density to hydrocarbons, and reacts well with oxygen. Finally, the iron oxide produced during combustion can be collected and reduced back to iron, creating a fully sustainable process. In this analysis, different power generation cycles were analyzed to maximize the energy and exergy efficiencies as well as the work output per unit mass of iron. It was found that the power cycle that maximized both the energy and exergy efficiencies as well as the work output per unit mass of input iron was a combined power cycle, where the topping cycle was a gas turbine cycle with one-stage compression and expansion and the bottoming cycle was a steam turbine cycle with two-stage expansion and reheat. This brought the theoretical energy efficiency to 59.87%, the theoretical exergy efficiency to 65.37%, and the theoretical work output per unit mass of iron to 4422 kJ/kg. The energy efficiency decreased to 56.81% when auxiliary devices were considered. 
    more » « less
    Free, publicly-accessible full text available July 15, 2026
  2. Egolfopoulos, Fokion (Ed.)
    Powdered iron is being investigated for its potential use as a carbon-free fuel due to its ability to burn heterogeneously and produce oxide particles, which can be collected, reduced back to iron and burned again. However, high temperature oxidation of iron particles can induce partial vaporization/decomposition and evolution of nanometric iron oxide particles. To investigate the formation process of nanoparticles in iron combustion, iron powders (consisting of spheroidal 45–53 μm particles) were injected in an electrically-heated drop tube furnace, operated at a maximum gas temperature of 1375 K, where they experienced high heating rates (104 K/s). The particles reacted with oxygen at concentrations of 15, 21, 35, 50 and 100 % by volume in nitrogen diluent gas. Particles ignited and burned brightly, with peak temperatures reaching 2344–2884 K, depending on the oxygen concentration. The observed distribution of the combustion products of iron was bimodal in size and composition, containing (a) dark gray spherical micrometric particles bigger than their iron particle precursors composed of both magnetite and hematite, and (b) highly agglomerated orange-reddish nanometric particles composed of hematite. The mass fraction of nanometric particles accounted for up to 1.7–7.4 % of the collected products, increasing with the oxygen partial pressure. The nanometric particles were spherules, 30–100 nm in diameter. However, they were highly agglomerated with aggregate aerodynamic diameters peaking at 180–560 nm. The yield of nanoparticles increased with increasing oxygen concentration in the furnace. A heuristic model was used to investigate the impact and sensitivity of various strategies for modeling evaporation, aiming to identify key mechanisms that limit the evaporation rate. This study highlights that understanding the type of liquid at the particle surface is crucial, as evaporation can increase significantly with a homogeneous liquid Fe-O particle compared to a core–shell morphology. Additionally, the analysis suggests that evaporation likely occurs in an intermediate regime where gaseous Fe-containing species oxidize in the boundary layer. Understanding these boundary layer processes is essential for accurately modeling the evaporation rate while maintaining computational efficiency. 1. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  3. Nimmo, Bill (Ed.)
    Free, publicly-accessible full text available July 9, 2026
  4. Nimmo, Bill (Ed.)
    This manuscript reports on the combustion of powdered iron, for the purpose of utilizing it as an environmentally friendly circular energy carrier. The conducted research investigated the spectral emissivity and temperature of iron particles, burned either individually or in groups. Combustion experiments were conducted under high heating rates in an externally-heated drop tube furnace. The pressure was atmospheric and the axial temperature was nearly-constant at ~1350 K. The oxidizer gas contained 15-100% oxygen in nitrogen diluent. Iron particles were sieve-classified in the 44-53 µm range. Results showed that, depending on the oxygen concentration, and consequently the particle temperature, the average spectral emissivities of single burning particles varied between 0.18 and 0.46, in the 600-1000 nm wavelength range. Corresponding temperatures of single particles varied between 2300 K and 2800 K, increasing with increasing oxygen concentration in the gas. In the case of groups of iron particles burning in air at different particle number densities, average spectral emissivities were found to be in the range of 0.42-0.45, with the upper value associated with denser particle clouds. Corresponding peak temperatures of particle burning in groups were found to be in the range of 2160 K to 2100 K, with the lower value attributed to denser particle clouds. 
    more » « less