Due to rapidly improving quantum computing hardware, Hamiltonian simulations of relativistic lattice field theories have seen a resurgence of attention. This computational tool requires turning the formally infinite-dimensional Hilbert space of the full theory into a finite-dimensional one. For gauge theories, a widely used basis for the Hilbert space relies on the representations induced by the underlying gauge group, with a truncation that keeps only a set of the lowest dimensional representations. This works well at large bare gauge coupling, but becomes less efficient at small coupling, which is required for the continuum limit of the lattice theory. In this work, we develop a new basis suitable for the simulation of an SU(2) lattice gauge theory in the maximal tree gauge. In particular, we show how to perform a Hamiltonian truncation so that the eigenvalues of both the magnetic and electric gauge-fixed Hamiltonian are mostly preserved, which allows for this basis to be used at all values of the coupling. Little prior knowledge is assumed, so this may also be used as an introduction to the subject of Hamiltonian formulations of lattice gauge theories.
This content will become publicly available on October 1, 2025
Fixed point lattice actions are designed to have continuum classical properties unaffected by discretization effects and reduced lattice artifacts at the quantum level. They provide a possible way to extract continuum physics with coarser lattices, thereby allowing one to circumvent problems with critical slowing down and topological freezing toward the continuum limit. A crucial ingredient for practical applications is to find an accurate and compact parametrization of a fixed point action, since many of its properties are only implicitly defined. Here we use machine learning methods to revisit the question of how to parametrize fixed point actions. In particular, we obtain a fixed point action for four-dimensional SU(3) gauge theory using convolutional neural networks with exact gauge invariance. The large operator space allows us to find superior parametrizations compared to previous studies, a necessary first step for future Monte Carlo simulations and scaling studies.
- Award ID(s):
- 2014150
- PAR ID:
- 10546359
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 110
- Issue:
- 7
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Published by the American Physical Society 2024 -
We consider a SU(2) lattice gauge theory on the square lattice, with a single fundamental complex fermion and a single fundamental complex boson on each lattice site. Projective symmetries of the gauge-charged fermions are chosen so that they match with those of the spinons of the-flux spin liquid. Global symmetries of all gauge-invariant observables are chosen to match with those of the particle-hole symmetric electronic Hubbard model at half-filling. Consequently, both the fundamental fermion and fundamental boson move in an average background-flux, their gauge-invariant composite is the physical electron, and eliminating gauge fields in a strong gauge-coupling expansion yields an effective extended Hubbard model for the electrons. The SU(2) gauge theory displays several confining/Higgs phases: a nodal-wave superconductor, and states with Néel, valence-bond solid, charge, or staggered current orders. There are also a number of quantum phase transitions between these phases that are very likely described by-dimensional deconfined conformal gauge theories, and we present large flavor expansions for such theories. These include the phenomenologically attractive case of a transition between a conventional insulator with a charge gap and Néel order, and a conventional-wave superconductor with gapless Bogoliubov quasiparticles at four nodal points in the Brillouin zone. We also apply our approach to the honeycomb lattice, where we find a bicritical point at the junction of Néel, valence bond solid (Kekulé), and Dirac semimetal phases.
Published by the American Physical Society 2024 -
Lattice symmetries are central to the characterization of electronic topology. Recently, it was shown that Green's function eigenvectors form a representation of the space group. This formulation has allowed the identification of gapless topological states even when quasiparticles are absent. Here we demonstrate the profundity of the framework in the extreme case, when interactions lead to a Mott insulator, through a solvable model with long-range interactions. We find that both Mott poles and zeros are subject to the symmetry constraints, and relate the symmetry-enforced spectral crossings to degeneracies of the original noninteracting eigenstates. Our results lead to new understandings of topological quantum materials and highlight the utility of interacting Green's functions toward their symmetry-based design.
Published by the American Physical Society 2024 -
Understanding quantum materials—solids in which interactions among constituent electrons yield a great variety of novel emergent quantum phenomena—is a forefront challenge in modern condensed matter physics. This goal has driven the invention and refinement of several experimental methods, which can spectroscopically determine the elementary excitations and correlation functions that determine material properties. Here we focus on the future experimental and theoretical trends of resonant inelastic x-ray scattering (RIXS), which is a remarkably versatile and rapidly growing technique for probing different charge, lattice, spin, and orbital excitations in quantum materials. We provide a forward-looking introduction to RIXS and outline how this technique is poised to deepen our insight into the nature of quantum materials and of their emergent electronic phenomena.
Published by the American Physical Society 2024 -
The Kondo lattice is one of the classic examples of strongly correlated electronic systems. We conduct a controlled study of the Kondo lattice in one dimension, highlighting the role of excitations created by the composite fermion operator. Using time-dependent matrix product state methods, we compute various correlation functions and contrast them with both large-N mean-field theory and the strong-coupling expansion. We show that the composite fermion operator creates long-lived, charge-e and spin-1/2 excitations, which cover the low-lying single-particle excitation spectrum of the system. Furthermore, spin excitations can be thought to be composed of such fractionalized quasiparticles with a residual interaction which tend to disappear at weak Kondo coupling.
Published by the American Physical Society 2024