skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Living collections: Biodiversity cultivated at public gardens has the power to connect ecological questions and evolutionary context
Combining ecological questions with evolutionary con- text generates novel insight into both ecology and evo- lution. However, our ability to draw broad inferences can be limited by the taxonomic diversity present within and across species at a site. Public gardens (including botan- ical gardens and arboreta) may focus solely on aesthetics in developing their gardens, but some public gardens include scientific inquiry and conservation at the core of their missions (Hohn, 2022). These scientifically oriented public gardens follow community standards of excellence (Hohn, 2022) to provide unique access to curated plant collections specifically designed to gather high levels of biodiversity, both among and within species, at a single geographic location. These research‐grade collections include long‐lived species cared for over many decades. Such public gardens have long histories of conducting and supporting research harnessing the power inherent in these diverse collections, including explorations of sys- tematics, ecophysiology, and ecology. By bringing together species, as well as individuals within species, from across broad spatial ranges into a single site, these collections offer living repositories of diversity ripe for scientific exploration as de facto common gardens (Dosmann, 2006; Dosmann and Groover, 2012; Primack et al., 2021).  more » « less
Award ID(s):
2217714
PAR ID:
10546476
Author(s) / Creator(s):
; ;
Editor(s):
Diggle, P
Publisher / Repository:
American Journal of Botany
Date Published:
Journal Name:
American Journal of Botany
Volume:
111
Issue:
9
ISSN:
0002-9122
Page Range / eLocation ID:
e16394
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Botanical gardens make unique contributions to climate change research, conservation, and public engagement. They host unique resources, including diverse collections of plant species growing in natural conditions, historical records, and expert staff, and attract large numbers of visitors and volunteers. Networks of botanical gardens spanning biomes and continents can expand the value of these resources. Over the past decade, research at botanical gardens has advanced our understanding of climate change impacts on plant phenology, physiology, anatomy, and conservation. For example, researchers have utilized botanical garden networks to assess anatomical and functional traits associated with phenological responses to climate change. New methods have enhanced the pace and impact of this research, including phylogenetic and comparative methods, and online databases of herbarium specimens and photographs that allow studies to expand geographically, temporally, and taxonomically in scope. Botanical gardens have grown their community and citizen science programs, informing the public about climate change and monitoring plants more intensively than is possible with garden staff alone. Despite these advances, botanical gardens are still underutilized in climate change research. To address this, we review recent progress and describe promising future directions for research and public engagement at botanical gardens. 
    more » « less
  2. Over 300 million arthropod specimens are housed in North American natural history collections. These collections represent a “vast hidden treasure trove” of biodiversity −95% of the specimen label data have yet to be transcribed for research, and less than 2% of the specimens have been imaged. Specimen labels contain crucial information to determine species distributions over time and are essential for understanding patterns of ecology and evolution, which will help assess the growing biodiversity crisis driven by global change impacts. Specimen images offer indispensable insight and data for analyses of traits, and ecological and phylogenetic patterns of biodiversity. Here, we review North American arthropod collections using two key metrics, specimen holdings and digitization efforts, to assess the potential for collections to provide needed biodiversity data. We include data from 223 arthropod collections in North America, with an emphasis on the United States. Our specific findings are as follows: (1) The majority of North American natural history collections (88%) and specimens (89%) are located in the United States. Canada has comparable holdings to the United States relative to its estimated biodiversity. Mexico has made the furthest progress in terms of digitization, but its specimen holdings should be increased to reflect the estimated higher Mexican arthropod diversity. The proportion of North American collections that has been digitized, and the number of digital records available per species, are both much lower for arthropods when compared to chordates and plants. (2) The National Science Foundation’s decade-long ADBC program (Advancing Digitization of Biological Collections) has been transformational in promoting arthropod digitization. However, even if this program became permanent, at current rates, by the year 2050 only 38% of the existing arthropod specimens would be digitized, and less than 1% would have associated digital images. (3) The number of specimens in collections has increased by approximately 1% per year over the past 30 years. We propose that this rate of increase is insufficient to provide enough data to address biodiversity research needs, and that arthropod collections should aim to triple their rate of new specimen acquisition. (4) The collections we surveyed in the United States vary broadly in a number of indicators. Collectively, there is depth and breadth, with smaller collections providing regional depth and larger collections providing greater global coverage. (5) Increased coordination across museums is needed for digitization efforts to target taxa for research and conservation goals and address long-term data needs. Two key recommendations emerge: collections should significantly increase both their specimen holdings and their digitization efforts to empower continental and global biodiversity data pipelines, and stimulate downstream research. 
    more » « less
  3. null (Ed.)
    Abstract Cultivated exotic plants are often introduced for their aesthetic value and today comprise a substantial fraction of the flora of urban domestic gardens. Yet, their relative contribution to the functional diversity of domestic gardens and how it changes across different climate zones is insufficiently understood. Here, we investigated whether the effects of cultivated exotics on functional diversity of three plant traits related to plant aesthetics (that is, plant showiness, plant height, and leaf area) varied in suburban domestic gardens in three regions (Minnesota, USA; Alt Empordà, Spain; and central South Africa) that differ in aridity. For each garden, we calculated the mean and variance of each plant trait considering all co-occurring species and also splitting them into co-occurring cultivated exotics and natives. Our results revealed that mean plant showiness increased linearly with the proportion of cultivated exotics both across and within studied regions. Moreover, co-occurring cultivated exotics were, on average, showier than natives in all regions, but differences in their trait variances were context-dependent. The interaction between cultivated exotics and aridity explained variation in mean plant height and leaf area better than either predictor alone, with the effect of cultivated exotics being stronger in more arid regions. Accordingly, co-occurring cultivated exotics were taller and had larger leaves than natives in warmer and drier regions, while the opposite was true in cooler and wetter regions. Our study highlights the need to consider the combined effects of exotic species and climate in future studies of urban ecology. 
    more » « less
  4. Abstract There is a contemporary trend in many major research institutions to de‐emphasize the importance of natural history education in favor of theoretical, laboratory, or simulation‐based research programs. This may take the form of removing biodiversity and field courses from the curriculum and the sometimes subtle maligning of natural history research as a “lesser” branch of science. Additional threats include massive funding cuts to natural history museums and the maintenance of their collections, the extirpation of taxonomists across disciplines, and a critical under‐appreciation of the role that natural history data (and other forms of observational data, including Indigenous knowledge) play in the scientific process. In this paper, we demonstrate that natural history knowledge is integral to any competitive science program through a comprehensive review of the ways in which they continue to shape modern theory and the public perception of science. We do so by reviewing how natural history research has guided the disciplines of ecology, evolution, and conservation and how natural history data are crucial for effective education programs and public policy. We underscore these insights with contemporary case studies, including: how understanding the dynamics of evolutionary radiation relies on natural history data; methods for extracting novel data from museum specimens; insights provided by multi‐decade natural history programs; and how natural history is the most logical venue for creating an informed and scientifically literate society. We conclude with recommendations aimed at students, university faculty, and administrators for integrating and supporting natural history in their mandates. Fundamentally, we are all interested in understanding the natural world, but we can often fall into the habit of abstracting our research away from its natural contexts and complexities. Doing so risks losing sight of entire vistas of new questions and insights in favor of an over‐emphasis on simulated or overly controlled studies. 
    more » « less
  5. Abstract Asian pheretimoid earthworms of the genera Amynthas and Metaphire (jumping worms) are leading a new wave of coinvasion into Northeastern and Midwestern states, with potential consequences for native organisms and ecosystem processes. However, little is known about their distribution, abundance, and habitat preferences in urban landscapes—areas that will likely influence their range expansion via human-driven spread. We led a participatory field campaign to assess jumping worm distribution and abundance in Madison, Wisconsin, in the United States. By compressing 250 person-hours of sampling effort into a single day, we quantified the presence and abundance of three jumping worm species across different land-cover types (forest, grassland, open space, and residential lawns and gardens), finding that urban green spaces differed in invasibility. We show that community science can be powerful for researching invasive species while engaging the public in conservation. This approach was particularly effective in the present study, where broad spatial sampling was required within a short temporal window. 
    more » « less