skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Shallow-Water Habitat in the Lower Columbia River Estuary: A Highly Altered System
Abstract Decreases in shallow-water habitat area (SWHA) in the Lower Columbia River and Estuary (LCRE) have adversely affected salmonid populations. We investigate the causes by hindcasting SWHA from 1928 to 2004, system-wide, based on daily higher high water (HHW) and system hypsometry. Physics-based regression models are used to represent HHW along the system as a function of river inflow, tides, and coastal processes, and hypsometry is used to estimate the associated SWHA. Scenario modeling is employed to attribute SWHA losses to levees, flow regulation, diversion, navigational development, and climate-induced hydrologic change, for subsidence scenarios of up to 2 m, and for 0.5 m fill. For zero subsidence, the system-wide annual-average loss of SWHA is 55 ± 5%, or 51 × 105 ha/year; levees have caused the largest decrease ($${54}_{-14}^{+5}$$ 54 - 14 + 5 %, or ~ 50 × 105 ha/year). The loss in SWHA due to operation of the hydropower system is small, but spatially and seasonally variable. During the spring freshet critical to juvenile salmonids, the total SWHA loss was$${63}_{-3}^{+2}$$ 63 - 3 + 2 %, with the hydropower system causing losses of 5–16% (depending on subsidence). Climate change and navigation have caused SWHA losses of$${5}_{-5}^{+16}$$ 5 - 5 + 16 % and$${4}_{-6}^{+14}$$ 4 - 6 + 14 %, respectively, but with high spatial variability; irrigation impacts have been small. Uncertain subsidence causes most of the uncertainty in estimates; the sum of the individual factors exceeds the total loss, because factors interact. Any factor that reduces mean or peak flows (reservoirs, diversion, and climate change) or alters tides and along-channel slope (navigation) becomes more impactful as assumed historical elevations are increased to account for subsidence, while levees matter less.  more » « less
Award ID(s):
2013280
PAR ID:
10546570
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Estuaries and Coasts
Volume:
47
Issue:
1
ISSN:
1559-2723
Page Range / eLocation ID:
91 to 116
Subject(s) / Keyword(s):
shallow water habitat, estuary change
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> We report the first measurement of the inclusivee+e→$$ b\overline{b} $$ b b ¯ →$$ {D}_s^{\pm } $$ D s ± Xande+e→$$ b\overline{b} $$ b b ¯ → D0/$$ {\overline{D}}^0 $$ D ¯ 0 Xcross sections in the energy range from 10.63 to 11.02 GeV. Based on these results, we determineσ(e+e→$$ {B}_s^0{\overline{B}}_s^0 $$ B s 0 B ¯ s 0 X) andσ(e+e→$$ B\overline{B} $$ B B ¯ X) in the same energy range. We measure the fraction of$$ {B}_s^0 $$ B s 0 events at Υ(10860) to befs= ($$ {22.0}_{-2.1}^{+2.0} $$ 22.0 2.1 + 2.0 )%. We determine also the ratio of the$$ {B}_s^0 $$ B s 0 inclusive branching fractions$$ \mathcal{B} $$ B ($$ {B}_s^0 $$ B s 0 → D0/$$ {\overline{D}}^0 $$ D ¯ 0 X)/$$ \mathcal{B} $$ B ($$ {B}_s^0 $$ B s 0 →$$ {D}_s^{\pm } $$ D s ± X) = 0.416 ± 0.018 ± 0.092. The results are obtained using the data collected with the Belle detector at the KEKB asymmetric-energye+ecollider. 
    more » « less
  2. Abstract Lifetimes of higher-lying states ($$2_2^+$$ 2 2 + and$$4_1^+$$ 4 1 + ) in$$^{16}$$ 16 C have been measured, employing the Gammasphere and Microball detector arrays, as key observables to test and refine ab initio calculations based on interactions developed within chiral Effective Field Theory. The presented experimental constraints to these lifetimes of$$\tau ({2_2^+}) = [\,244, 446]\,~\textrm{fs}$$ τ ( 2 2 + ) = [ 244 , 446 ] fs and$$\tau ({4_1^+}) = [\,1.8, 4]\,~\textrm{ps}$$ τ ( 4 1 + ) = [ 1.8 , 4 ] ps , combined with previous results on the lifetime of the$$2_1^+$$ 2 1 + state of$$^{16}$$ 16 C, provide a rather complete set of key observables to benchmark the theoretical developments. We present No-Core Shell-Model calculations using state-of-the-art chiral 2- (NN) and 3-nucleon (3N) interactions at next-to-next-to-next-to-leading order for both the NN and the 3N contributions and a generalized natural-orbital basis (instead of the conventional harmonic-oscillator single-particle basis) which reproduce, for the first time, the experimental findings remarkably well. The level of agreement of the new calculations as compared to the CD-Bonn meson-exchange NN interaction is notable and presents a critical benchmark for theory. 
    more » « less
  3. Abstract We present measurements of the branching fractions of eight$$ {\overline{B}}^0 $$ B ¯ 0 →D(*)+K$$ {K}_{(S)}^{\left(\ast \right)0} $$ K S 0 ,B→D(*)0K$$ {K}_{(S)}^{\left(\ast \right)0} $$ K S 0 decay channels. The results are based on data from SuperKEKB electron-positron collisions at the Υ(4S) resonance collected with the Belle II detector, corresponding to an integrated luminosity of 362 fb−1. The event yields are extracted from fits to the distributions of the difference between expected and observedBmeson energy, and are efficiency-corrected as a function ofm(K$$ {K}_{(S)}^{\left(\ast \right)0} $$ K S 0 ) andm(D(*)$$ {K}_{(S)}^{\left(\ast \right)0} $$ K S 0 ) in order to avoid dependence on the decay model. These results include the first observation of$$ {\overline{B}}^0 $$ B ¯ 0 →D+K$$ {K}_S^0 $$ K S 0 ,B→D*0K$$ {K}_S^0 $$ K S 0 , and$$ {\overline{B}}^0 $$ B ¯ 0 →D*+K$$ {K}_S^0 $$ K S 0 decays and a significant improvement in the precision of the other channels compared to previous measurements. The helicity-angle distributions and the invariant mass distributions of theK$$ {K}_{(S)}^{\left(\ast \right)0} $$ K S 0 systems are compatible with quasi-two-body decays via a resonant transition with spin-parityJP= 1for theK$$ {K}_S^0 $$ K S 0 systems andJP= 1+for theKK*0systems. We also present measurements of the branching fractions of four$$ {\overline{B}}^0 $$ B ¯ 0 →D(*)+$$ {D}_s^{-} $$ D s ,B→D(*)0$$ {D}_s^{-} $$ D s decay channels with a precision compatible to the current world averages. 
    more » « less
  4. A<sc>bstract</sc> ThepT-differential production cross sections of non-prompt D0, D+, and$$ {\textrm{D}}_{\textrm{s}}^{+} $$ D s + mesons originating from beauty-hadron decays are measured in proton–proton collisions at a centre-of-mass energy$$ \sqrt{s} $$ s = 13 TeV. The measurements are performed at midrapidity, |y|<0.5, with the data sample collected by ALICE from 2016 to 2018. The results are in agreement with predictions from several perturbative QCD calculations. The fragmentation fraction of beauty quarks to strange mesons divided by the one to non-strange mesons,fs/(fu+fd), is found to be 0.114 ± 0.016 (stat.) ± 0.006 (syst.) ± 0.003 (BR) ± 0.003 (extrap.). This value is compatible with previous measurements at lower centre-of-mass energies and in different collision systems in agreement with the assumption of universality of fragmentation functions. In addition, the dependence of the non-prompt D meson production on the centre-of-mass energy is investigated by comparing the results obtained at$$ \sqrt{s} $$ s = 5.02 and 13 TeV, showing a hardening of the non-prompt D-mesonpT-differential production cross section at higher$$ \sqrt{s} $$ s . Finally, the$$ \textrm{b}\overline{\textrm{b}} $$ b b ¯ production cross section per unit of rapidity at midrapidity is calculated from the non-prompt D0, D+,$$ {\textrm{D}}_{\textrm{s}}^{+} $$ D s + , and$$ {\Lambda}_{\textrm{c}}^{+} $$ Λ c + hadron measurements, obtaining$$ \textrm{d}\sigma /\textrm{d}y=75.2\pm 3.2\left(\textrm{stat}.\right)\pm 5.2{\left(\textrm{syst}.\right)}_{-3.2}^{+12.3}\left(\textrm{extrap}.\right) $$ d σ / d y = 75.2 ± 3.2 stat . ± 5.2 syst . 3.2 + 12.3 extrap . μb. 
    more » « less
  5. Abstract The nucleus206Po was studied in the two proton transfer reaction204Pb(16O,14C)206Po and the lifetime of the first excited 2+state was determined by utilizing the Recoil Distance Doppler Shift method. The experimental results are compared with shell-model calculations based on different effective interactions. The calculations qualitatively reproduced the experimentally observed B ( E 2 ; 2 1 + 0 1 + ) value, suggesting that the 2 1 + state of206Po exhibits a collective nature. However, the employed effective interactions revealed some limitations, particularly in their description of the 4 1 , 2 + states. These results emphasize the importance of understanding the properties of low-lying states, especially their evolution from single-particle dynamics to collective modes, in evaluating various effective nuclear interactions. 
    more » « less