skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Omnidirectional Energetic Electron Fluxes From 150 to 20,000 km: An ELFIN‐Based Model
Abstract The strong variations of energetic electron fluxes in the Earth's inner magnetosphere are notoriously hard to forecast. Developing accurate empirical models of electron fluxes from low to high altitudes at all latitudes is therefore useful to improve our understanding of flux variations and to assess radiation hazards for spacecraft systems. In the present work, energy‐ and pitch‐angle‐resolved precipitating, trapped, and backscattered electron fluxes measured at low altitude by Electron Loss and Fields Investigation (ELFIN) CubeSats are used to infer omnidirectional fluxes at altitudes below and above the spacecraft, from 150 to 20,000 km, making use of adiabatic transport theory and quasi‐linear diffusion theory. The inferred fluxes are fitted as a function of selected parameters using a stepwise multivariate optimization procedure, providing an analytical model of omnidirectional electron flux along each geomagnetic field line, based on measurements from only one spacecraft in low Earth orbit. The modeled electron fluxes are provided as a function of ‐shell, altitude, energy, and two different indices of past substorm activity, computed over the preceding 4 hr or 3 days, potentially allowing to disentangle impulsive processes (such as rapid injections) from cumulative processes (such as inward radial diffusion and wave‐driven energization). The model is validated through comparisons with equatorial measurements from the Van Allen Probes, demonstrating the broad applicability of the present method. The model indicates that both impulsive and time‐integrated substorm activity partly control electron fluxes in the outer radiation belt and in the plasma sheet.  more » « less
Award ID(s):
2329897
PAR ID:
10546903
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
129
Issue:
10
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The magnetospheric substorm is a key mode of flux and energy transport throughout the magnetosphere associated with distinct and repeatable magnetotail dynamical processes and plasma injections. The substorm growth phase is characterized by current sheet thinning and magnetic field reconfiguration around the equatorial plane. The global characteristics of current sheet thinning are important for understanding of magnetotail state right before the onset of magnetic reconnection and of the key substorm expansion phase. In this paper, we investigate this thinning at different radial distances using plasma sheet (PS) energetic (>50 keV) electrons that reach from the equator to low altitudes during their fast (∼1 s) travel along magnetic field lines. We perform a multi‐case study and a statistical analysis of 34 events with near‐equatorial observations of the current sheet thinning by equatorial missions and concurrent, latitudinal crossings of the ionospheric projection of the magnetotail by the low‐altitude Electron Losses and Fields Investigation (ELFIN) CubeSats at approximately the same local time sector. Energetic electron fluxes thus collected by ELFIN provide near‐instantaneous (<5 min duration) radial snapshots of magnetotail fluxes. Main findings of this study confirm the previously proposed concepts with low‐altitude energetic electron measurements: (a) Energy distributions of low‐altitude fluxes are quantitatively close to the near‐equatorial distributions, which justifies the investigation of the magnetotail current sheet reconfiguration using low‐altitude measurements. (b) The magnetic field reconfiguration during the current sheet thinning (which lasts ≥ an hour) results in a rapid shrinking of the low‐altitude projection of the entire PS (from near‐Earth, ∼10RE, to the lunar orbit ∼60RE) to 1–2° of magnetic latitude in the ionosphere. (c) The current sheet dipolarization, common during the substorm onset, is associated with a very quick (∼10 min) change of the tail magnetic field configuration to its dipolar state, as implied by a poleward expansion of the PSPS at low altitudes. 
    more » « less
  2. Abstract Near‐equatorial measurements of energetic electron fluxes, in combination with numerical simulation, are widely used for monitoring of the radiation belt dynamics. However, the long orbital periods of near‐equatorial spacecraft constrain the cadence of observations to once per several hours or greater, that is, much longer than the mesoscale injections and rapid local acceleration and losses of energetic electrons of interest. An alternative approach for radiation belt monitoring is to use measurements of low‐altitude spacecraft, which cover, once per hour or faster, the latitudinal range of the entire radiation belt within a few minutes. Such an approach requires, however, a procedure for mapping the flux from low equatorial pitch angles (near the loss cone) as measured at low altitude, to high equatorial pitch angles (far from the loss cone), as necessitated by equatorial flux models. Here we do this using the high energy resolution ELFIN measurements of energetic electrons. Combining those with GPS measurements we develop a model for the electron anisotropy coefficient, , that describes electron flux dependence on equatorial pitch‐angle, , . We then validate this model by comparing its equatorial predictions from ELFIN with in‐situ near‐equatorial measurements from Arase (ERG) in the outer radiation belt. 
    more » « less
  3. Abstract Although the effects of electromagnetic ion cyclotron (EMIC) waves on the dynamics of the Earth's outer radiation belt have been a topic of intense research for more than 20 years, their influence on rapid dropouts of electron flux has not yet been fully assessed. Here, we make use of contemporaneous measurements on the same ‐shell of trapped electron fluxes at 20,000 km altitude by Global Positioning System (GPS) spacecraft and of trapped and precipitating electron fluxes at 450 km altitude by Electron Losses and Fields Investigation (ELFIN) CubeSats in 2020–2022, to investigate the impact of EMIC wave‐driven electron precipitation on the dynamics of the outer radiation belt below the last closed drift shell of trapped electrons. During six of the seven selected events, the strong 1–2 MeV electron precipitation measured at ELFIN, likely driven by EMIC waves, occurs within 1–2 hr from a dropout of relativistic electron flux at GPS spacecraft. Using quasi‐linear diffusion theory, EMIC wave‐driven pitch angle diffusion rates are inferred from ELFIN measurements, allowing us to quantitatively estimate the corresponding flux drop based on typical spatial and temporal extents of EMIC waves. We find that EMIC wave‐driven electron precipitation alone can account for the observed dropout magnitude at 1.5–3 MeV during all events and that, when dropouts extend down to 0.5 MeV, a fraction of electron loss may sometimes be due to EMIC waves. This suggests that EMIC wave‐driven electron precipitation could modulate dropout magnitude above 1 MeV in the heart of the outer radiation belt. 
    more » « less
  4. Abstract Energetic electron precipitation from Earth’s outer radiation belt heats the upper atmosphere and alters its chemical properties. The precipitating flux intensity, typically modelled using inputs from high-altitude, equatorial spacecraft, dictates the radiation belt’s energy contribution to the atmosphere and the strength of space-atmosphere coupling. The classical quasi-linear theory of electron precipitation through moderately fast diffusive interactions with plasma waves predicts that precipitating electron fluxes cannot exceed fluxes of electrons trapped in the radiation belt, setting an apparent upper limit for electron precipitation. Here we show from low-altitude satellite observations, that ~100 keV electron precipitation rates often exceed this apparent upper limit. We demonstrate that such superfast precipitation is caused by nonlinear electron interactions with intense plasma waves, which have not been previously incorporated in radiation belt models. The high occurrence rate of superfast precipitation suggests that it is important for modelling both radiation belt fluxes and space-atmosphere coupling. 
    more » « less
  5. Abstract In planetary radiation belts, the Kennel‐Petschek flux limit is expected to set an upper limit on trapped electron fluxes at 80–600 keV in the presence of efficient electron loss through pitch‐angle diffusion by whistler‐mode chorus waves generated around the magnetic equator by the same 80–600 keV electron population. Comparisons with maximum measured fluxes have been relatively successful, but several key assumptions of the Kennel‐Petschek model have not been experimentally tested. The Kennel‐Petschek model notably assumes an exponential growth of chorus waves as the trapped electron flux increases, and a fixed maximum wave power gain of about 3. Here, we describe a method for inferring the near‐equatorial wave power gain using only measurements of trapped, precipitating, and backscattered electron fluxes at low altitude. Next, we make use of Electron Losses and Fields Investigation (ELFIN) CubeSats measurements of such electron fluxes during two moderate geomagnetic storms with sustained electron injections to infer the corresponding chorus wave power gains as a function of time, energy, and equatorial trapped electron flux. We show that wave power increases exponentially with trapped flux, with a wave power gain roughly proportional to the theoretical linear convective gain, and that the maximum inferred gain near the upper flux limit is roughly 10, with a factor of 2 uncertainty. Therefore, two key theoretical underpinnings of the Kennel‐Petschek model are borne out by the present results, although the strong inferred gains should correspond to higher flux limits than in traditional estimates. 
    more » « less