skip to main content


Title: Thinning of the Magnetotail Current Sheet Inferred From Low‐Altitude Observations of Energetic Electrons
Abstract

The magnetospheric substorm is a key mode of flux and energy transport throughout the magnetosphere associated with distinct and repeatable magnetotail dynamical processes and plasma injections. The substorm growth phase is characterized by current sheet thinning and magnetic field reconfiguration around the equatorial plane. The global characteristics of current sheet thinning are important for understanding of magnetotail state right before the onset of magnetic reconnection and of the key substorm expansion phase. In this paper, we investigate this thinning at different radial distances using plasma sheet (PS) energetic (>50 keV) electrons that reach from the equator to low altitudes during their fast (∼1 s) travel along magnetic field lines. We perform a multi‐case study and a statistical analysis of 34 events with near‐equatorial observations of the current sheet thinning by equatorial missions and concurrent, latitudinal crossings of the ionospheric projection of the magnetotail by the low‐altitude Electron Losses and Fields Investigation (ELFIN) CubeSats at approximately the same local time sector. Energetic electron fluxes thus collected by ELFIN provide near‐instantaneous (<5 min duration) radial snapshots of magnetotail fluxes. Main findings of this study confirm the previously proposed concepts with low‐altitude energetic electron measurements: (a) Energy distributions of low‐altitude fluxes are quantitatively close to the near‐equatorial distributions, which justifies the investigation of the magnetotail current sheet reconfiguration using low‐altitude measurements. (b) The magnetic field reconfiguration during the current sheet thinning (which lasts ≥ an hour) results in a rapid shrinking of the low‐altitude projection of the entire PS (from near‐Earth, ∼10RE, to the lunar orbit ∼60RE) to 1–2° of magnetic latitude in the ionosphere. (c) The current sheet dipolarization, common during the substorm onset, is associated with a very quick (∼10 min) change of the tail magnetic field configuration to its dipolar state, as implied by a poleward expansion of the PSPS at low altitudes.

 
more » « less
Award ID(s):
2019914
NSF-PAR ID:
10382508
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
127
Issue:
10
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Low‐altitude observations of magnetospheric particles provide a unique opportunity for remote probing of the magnetospheric and plasma states during active times. We present the first statistical analysis of a specific pattern in such observations, energetic electron flux dropouts in the low‐altitude projection of the plasma sheet. Using 3.5 years of data from the ELFIN CubeSats we report the occurrence distribution of 145 energetic electron flux dropout events and identify characteristics, including their prevalence in the dusk and premidnight sectors, their association with substorms and enhanced auroral activities, and their correlation with the region‐1 (R1) field‐aligned current region. We also investigate three representative dropout events which benefit from satellite conjunctions between ELFIN, GOES, and THEMIS, to better understand the magnetospheric drivers and magnetic field conditions that lead to such dropouts as viewed by ELFIN. One class of dropouts may be associated with magnetic field mapping distortions due to local enhancements and thinning of cross‐tail current sheets and amplification of R1 field‐aligned currents. The other class may be associated with the increase in perpendicular anisotropy of magnetospheric electrons due to magnetic field dipolarizations near premidnight. These plasma sheet flux dropouts at ELFIN provide a valuable tool for refining magnetospheric models, thereby improving the accuracy of field‐line mapping during substorms.

     
    more » « less
  2. Abstract

    Energetic (≳50 keV) electron precipitation from the magnetosphere to the ionosphere during substorms can be important for magnetosphere‐ionosphere coupling. Using conjugate observations between the THEMIS, ELFIN, and DMSP spacecraft during a substorm, we have analyzed the energetic electron precipitation, the magnetospheric injection, and the associated plasma waves to examine the role of waves in pitch‐angle scattering plasma sheet electrons into the loss cone. During the substorm expansion phase, ELFIN‐A observed 50–300 keV electron precipitation from the plasma sheet that was likely driven by wave‐particle interactions. The identification of the low‐altitude extent of the plasma sheet from ELFIN is aided by DMSP global auroral images. Combining quasi‐linear theory, numerical test particle simulations, and equatorial THEMIS measurements of particles and fields, we have evaluated the relative importance of kinetic Alfvén waves (KAWs) and whistler‐mode waves in driving the observed precipitation. We find that the KAW‐driven bounce‐averaged pitch‐angle diffusion coefficientsnear the edge of the loss cone are ∼10−6–10−5s−1for these energetic electrons. Thedue to parallel whistler‐mode waves, observed at THEMIS ∼10‐min after the ELFIN observations, are ∼10−8–10−6s−1. Thus, at least in this case, the observed KAWs dominate over the observed whistler‐mode waves in the scattering and precipitation of energetic plasma sheet electrons during the substorm injection.

     
    more » « less
  3. Abstract

    Relativistic electron precipitation to the Earth's atmosphere is an important loss mechanism of inner magnetosphere electrons, contributing significantly to the dynamics of the radiation belts. Such precipitation may be driven by electron resonant scattering by middle‐latitude whistler‐mode waves at dawn to noon; by electromagnetic ion cyclotron (EMIC) waves at dusk; or by curvature scattering at the isotropy boundary (at the inner edge of the electron plasma sheet anywhere on the nightside, from dusk to dawn). Using low‐altitude ELFIN and near‐equatorial THEMIS measurements, we report on a new type of relativistic electron precipitation that shares some properties with the traditional curvature scattering mechanism (occurring on the nightside and often having a clear energy/L‐shell dispersion). However, it is less common than the typical electron isotropy boundary and it is observed most often during substorms. It is seen equatorward of (and well separated from) the electron isotropy boundary and around or poleward of the ion isotropy boundary (the inner edge of the ion plasma sheet). It may be due to one or more of the following mechanisms: EMIC waves in the presence of a specific radial profile of the cold plasma density; a regional suppression of the magnetic field enhancing curvature scattering locally; and/or electron resonant scattering by kinetic Alfvén waves.

     
    more » « less
  4. Abstract

    The near‐Earth plasma sheet region is the main source of energetic (tens to hundreds keV) ion and electron populations transported by convection and injections into the inner magnetosphere. Energetic ions from the plasma sheet contribute to the ring current, whereas energetic electrons contribute to the radiation belt seed population for further acceleration to relativistic energies. Near‐Earth plasma sheet energetic fluxes have been traditionally used to set boundary conditions for radiation belt and ring current models. This study provides an empirical parametrization for ∼75 keV flux intensity as a function of the geomagnetic activity index auroral electrojet and the equatorial magnetic fieldBz. Such parametrization includes the dynamic magnetic field configuration in the near‐Earth plasma sheet and may be merged with empirical magnetic field models. We also provide models extending this parametrization to the [20, 300] keV of electron energy range and [75, 300] keV of ion energy range. The parametrization is developed based on THEMIS and Geostationary Operational Environmental Satellite measurements, and verified by comparison with MMS measurements in the near‐Earth plasma sheet. This parametrization incorporates meso‐scale transient flux variations associated withBzperturbations into ring current and radiation belt simulations.

     
    more » « less
  5. null (Ed.)
    Abstract The Electron Loss and Fields Investigation with a Spatio-Temporal Ambiguity-Resolving option (ELFIN-STAR, or heretoforth simply: ELFIN) mission comprises two identical 3-Unit (3U) CubeSats on a polar (∼93 ∘ inclination), nearly circular, low-Earth (∼450 km altitude) orbit. Launched on September 15, 2018, ELFIN is expected to have a >2.5 year lifetime. Its primary science objective is to resolve the mechanism of storm-time relativistic electron precipitation, for which electromagnetic ion cyclotron (EMIC) waves are a prime candidate. From its ionospheric vantage point, ELFIN uses its unique pitch-angle-resolving capability to determine whether measured relativistic electron pitch-angle and energy spectra within the loss cone bear the characteristic signatures of scattering by EMIC waves or whether such scattering may be due to other processes. Pairing identical ELFIN satellites with slowly-variable along-track separation allows disambiguation of spatial and temporal evolution of the precipitation over minutes-to-tens-of-minutes timescales, faster than the orbit period of a single low-altitude satellite (T orbit ∼ 90 min). Each satellite carries an energetic particle detector for electrons (EPDE) that measures 50 keV to 5 MeV electrons with $\Delta $ Δ E/E < 40% and a fluxgate magnetometer (FGM) on a ∼72 cm boom that measures magnetic field waves (e.g., EMIC waves) in the range from DC to 5 Hz Nyquist (nominally) with <0.3 nT/sqrt(Hz) noise at 1 Hz. The spinning satellites (T spin $\,\sim $ ∼ 3 s) are equipped with magnetorquers (air coils) that permit spin-up or -down and reorientation maneuvers. Using those, the spin axis is placed normal to the orbit plane (nominally), allowing full pitch-angle resolution twice per spin. An energetic particle detector for ions (EPDI) measures 250 keV – 5 MeV ions, addressing secondary science. Funded initially by CalSpace and the University Nanosat Program, ELFIN was selected for flight with joint support from NSF and NASA between 2014 and 2018 and launched by the ELaNa XVIII program on a Delta II rocket (with IceSatII as the primary). Mission operations are currently funded by NASA. Working under experienced UCLA mentors, with advice from The Aerospace Corporation and NASA personnel, more than 250 undergraduates have matured the ELFIN implementation strategy; developed the instruments, satellite, and ground systems and operate the two satellites. ELFIN’s already high potential for cutting-edge science return is compounded by concurrent equatorial Heliophysics missions (THEMIS, Arase, Van Allen Probes, MMS) and ground stations. ELFIN’s integrated data analysis approach, rapid dissemination strategies via the SPace Environment Data Analysis System (SPEDAS), and data coordination with the Heliophysics/Geospace System Observatory (H/GSO) optimize science yield, enabling the widest community benefits. Several storm-time events have already been captured and are presented herein to demonstrate ELFIN’s data analysis methods and potential. These form the basis of on-going studies to resolve the primary mission science objective. Broad energy precipitation events, precipitation bands, and microbursts, clearly seen both at dawn and dusk, extend from tens of keV to >1 MeV. This broad energy range of precipitation indicates that multiple waves are providing scattering concurrently. Many observed events show significant backscattered fluxes, which in the past were hard to resolve by equatorial spacecraft or non-pitch-angle-resolving ionospheric missions. These observations suggest that the ionosphere plays a significant role in modifying magnetospheric electron fluxes and wave-particle interactions. Routine data captures starting in February 2020 and lasting for at least another year, approximately the remainder of the mission lifetime, are expected to provide a very rich dataset to address questions even beyond the primary mission science objective. 
    more » « less