skip to main content

Title: Superfast precipitation of energetic electrons in the radiation belts of the Earth

Energetic electron precipitation from Earth’s outer radiation belt heats the upper atmosphere and alters its chemical properties. The precipitating flux intensity, typically modelled using inputs from high-altitude, equatorial spacecraft, dictates the radiation belt’s energy contribution to the atmosphere and the strength of space-atmosphere coupling. The classical quasi-linear theory of electron precipitation through moderately fast diffusive interactions with plasma waves predicts that precipitating electron fluxes cannot exceed fluxes of electrons trapped in the radiation belt, setting an apparent upper limit for electron precipitation. Here we show from low-altitude satellite observations, that ~100 keV electron precipitation rates often exceed this apparent upper limit. We demonstrate that such superfast precipitation is caused by nonlinear electron interactions with intense plasma waves, which have not been previously incorporated in radiation belt models. The high occurrence rate of superfast precipitation suggests that it is important for modelling both radiation belt fluxes and space-atmosphere coupling.

; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1242918 2019914
Publication Date:
Journal Name:
Nature Communications
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. The plasmapause marks the limit of the plasmasphere and is characterized by a sudden change in plasma density. This can influence the other regions of the magnetosphere, including due to different waves circulating inside and outside the plasmasphere. In the present work, we first compare the positions of the plasmapause measured by the NASA Van Allen Probes in 2015 with those of the Space Weather Integrated Forecasting Framework plasmasphere model (SPM). Using the Van Allen Probes and other satellite observations like PROBA-V, we investigate the links that can exist with the radiation belt boundaries. The inward motion of the outer radiation belt associated with sudden flux enhancements of energetic electrons can indeed be directly related to the plasmapause erosion during geomagnetic storms, suggesting possible links. Moreover, the position of the plasmapause projected in the ionosphere is compared with the ionospheric convection boundary. The equatorward motion of the plasmapause projected in the ionosphere is related to the equatorward edge motion of the auroral oval that goes to lower latitudes during storms due to the geomagnetic perturbation, like the low altitude plasmapause and the outer radiation belt. The links between these different regions are investigated during quiet periods, for which the plasmaspheremore »is widely extended, as well as during geomagnetic storms for which plumes are generated, and then afterwards rotates with the plasmasphere. The magnetic local time dependence of these boundaries is especially studied on March 14, 2014 after a sudden northward turning of the interplanetary magnetic field (IMF) and for the geomagnetic storm of August 26, 2018, showing the importance of the magnetic field topology and of the convection electric field in the interactions between these different regions eventually leading to the coupling between magnetosphere and ionosphere.« less
  2. Abstract

    Within the fully integrated magnetosphere-ionosphere system, many electrodynamic processes interact with each other. We review recent advances in understanding three major meso-scale coupling processes within the system: the transient field-aligned currents (FACs), mid-latitude plasma convection, and auroral particle precipitation. (1) Transient FACs arise due to disturbances from either dayside or nightside magnetosphere. As the interplanetary shocks suddenly compress the dayside magnetosphere, short-lived FACs are induced at high latitudes with their polarity successively changing. Magnetotail dynamics, such as substorm injections, can also disturb the current structures, leading to the formation of substorm current wedges and ring current disruption. (2) The mid-latitude plasma convection is closely associated with electric fields in the system. Recent studies have unraveled some important features and mechanisms of subauroral fast flows. (3) Charged particles, while drifting around the Earth, often experience precipitating loss down to the upper atmosphere, enhancing the auroral conductivity. Recent studies have been devoted to developing more self-consistent geospace circulation models by including a better representation of the auroral conductance. It is expected that including these new advances in geospace circulation models could promisingly strengthen their forecasting capability in space weather applications. The remaining challenges especially in the global modeling of the circulation system are alsomore »discussed.

    « less
  3. Abstract

    The optical and near-ultraviolet (NUV) continuum radiation in M-dwarf flares is thought to be the impulsive response of the lower stellar atmosphere to magnetic energy release and electron acceleration at coronal altitudes. This radiation is sometimes interpreted as evidence of a thermal photospheric spectrum withT≈ 104K. However, calculations show that standard solar flare coronal electron beams lose their energy in a thick target of gas in the upper and middle chromosphere (log10column mass/[g cm−2] ≲ −3). At larger beam injection fluxes, electric fields and instabilities are expected to further inhibit propagation to low altitudes. We show that recent numerical solutions of the time-dependent equations governing the power-law electrons and background coronal plasma (Langmuir and ion-acoustic) waves from Kontar et al. produce order-of-magnitude larger heating rates than those that occur in the deep chromosphere through standard solar flare electron beam power-law distributions. We demonstrate that the redistribution of beam energy aboveE≳ 100 keV in this theory results in a local heating maximum that is similar to a radiative-hydrodynamic model with a large, low-energy cutoff and a hard power-law index. We use this semiempirical forward-modeling approach to produce opaque NUV and optical continua at gas temperaturesT≳ 12,000 K over the deepmore »chromosphere with log10column mass/[g cm−2] of −1.2 to −2.3. These models explain the color temperatures and Balmer jump strengths in high-cadence M-dwarf flare observations, and they clarify the relation among atmospheric, radiation, and optical color temperatures in stellar flares.

    « less
  4. Abstract

    The ionosphere is one of the important sources for magnetospheric plasma, particularly for heavy ions with low charge states. We investigate the effect of solar illumination on the number flux of ion outflow using data obtained by the Fast Auroral SnapshoT (FAST) satellite at 3000–4150 km altitude from 7 January 1998 to 5 February 1999. We derive empirical formulas between energy inputs and outflowing ion number fluxes for various solar zenith angle ranges. We found that the outflowing ion number flux under sunlit conditions increases more steeply with increasing electron density in the loss cone or with increasing precipitating electron density (> 50 eV), compared to the ion flux under dark conditions. Under ionospheric dark conditions, weak electron precipitation can drive ion outflow with small averaged fluxes (~ 107 cm−2 s−1). The slopes of relations between the Poynting fluxes and outflowing ion number fluxes show no clear dependence on the solar zenith angle. Intense ion outflow events (> 108 cm−2 s−1) occur mostly under sunlit conditions (solar zenith angle < 90°). Thus, it is presumably difficult to drive intense ion outflows under dark conditions, because of a lack of the solar illumination (low ionospheric density and/or small scale height owing to low plasma temperature).

    Graphical abstract

  5. We show an application of supervised deep learning in space sciences. We focus on the relativistic electron precipitation into Earth’s atmosphere that occurs when magnetospheric processes (wave-particle interactions or current sheet scattering, CSS) violate the first adiabatic invariant of trapped radiation belt electrons leading to electron loss. Electron precipitation is a key mechanism of radiation belt loss and can lead to several space weather effects due to its interaction with the Earth’s atmosphere. However, the detailed properties and drivers of electron precipitation are currently not fully understood yet. Here, we aim to build a deep learning model that identifies relativistic precipitation events and their associated driver (waves or CSS). We use a list of precipitation events visually categorized into wave-driven events (REPs, showing spatially isolated precipitation) and CSS-driven events (CSSs, showing an energy-dependent precipitation pattern). We elaborate the ensemble of events to obtain a dataset of randomly stacked events made of a fixed window of data points that includes the precipitation interval. We assign a label to each data point: 0 is for no-events, 1 is for REPs and 2 is for CSSs. Only the data points during the precipitation are labeled as 1 or 2. By adopting a longmore »short-term memory (LSTM) deep learning architecture, we developed a model that acceptably identifies the events and appropriately categorizes them into REPs or CSSs. The advantage of using deep learning for this task is meaningful given that classifying precipitation events by its drivers is rather time-expensive and typically must involve a human. After post-processing, this model is helpful to obtain statistically large datasets of REP and CSS events that will reveal the location and properties of the precipitation driven by these two processes at all L shells and MLT sectors as well as their relative role, thus is useful to improve radiation belt models. Additionally, the datasets of REPs and CSSs can provide a quantification of the energy input into the atmosphere due to relativistic electron precipitation, thus offering valuable information to space weather and atmospheric communities.« less