In this paper, we investigate hyperelastic and viscoelastic model parameters using Global Sensitivity Analysis(GSA). These models are used to characterize the physical response of many soft-elastomers, which are used in a wide variety of smart material applications. Recent research has shown the effectiveness of using fractional-order calculus operators in modeling the viscoelastic response. The GSA is performed using parameter subset selection (PSS), which quantifies the relative parameter contributions to the linear and nonlinear, fractional-order viscoelastic models. Calibration has been performed to quantify the model parameter uncertainty; however, this analysis has led to questions regarding parameter sensitivity and whether or not the parameters can be uniquely identified given the available data. By performing GSA we can determine which parameters are most influential in the model, and fix non-influential parameters at a nominal value. The model calibration can then be performed to quantify the uncertainty of the influential parameters.
more »
« less
Bayesian inference and uncertainty propagation using efficient fractional-order viscoelastic models for dielectric elastomers
Dielectric elastomers are employed for a wide variety of adaptive structures. Many of these soft elastomers exhibit significant rate-dependencies in their response. Accurately quantifying this viscoelastic behavior is non-trivial and in many cases a nonlinear modeling framework is required. Fractional-order operators have been applied to modeling viscoelastic behavior for many years, and recent research has shown fractional-order methods to be effective for nonlinear frameworks. This implementation can become computationally expensive to achieve an accurate approximation of the fractional-order derivative. Accurate estimation of the elastomer’s viscoelastic behavior to quantify parameter uncertainty motivates the use of Markov Chain Monte Carlo (MCMC) methods. Since MCMC is a sampling based method, requiring many model evaluations, efficient estimation of the fractional derivative operator is crucial. In this paper, we demonstrate the effectiveness of using quadrature techniques to approximate the Riemann–Liouville definition for fractional derivatives in the context of estimating the uncertainty of a nonlinear viscoelastic model. We also demonstrate the use of parameter subset selection techniques to isolate parameters that are identifiable in the sense that they are uniquely determined by measured data. For those identifiable parameters, we employ Bayesian inference to compute posterior distributions for parameters. Finally, we propagate parameter uncertainties through the models to compute prediction intervals for quantities of interest.
more »
« less
- Award ID(s):
- 1745654
- PAR ID:
- 10546929
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Journal of Intelligent Material Systems and Structures
- Volume:
- 32
- Issue:
- 4
- ISSN:
- 1045-389X
- Format(s):
- Medium: X Size: p. 486-496
- Size(s):
- p. 486-496
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Physiologically-based pharmacokinetic (PBPK) modeling is important for studying drug delivery in the central nervous system, including determining antibody exposure, predicting chemical concentrations at target locations, and ensuring accurate dosages. The complexity of PBPK models, involving many variables and parameters, requires a consideration of parameter identifiability; i.e., which parameters can be uniquely determined from data for a specified set of concentrations. We introduce the use of a local sensitivity-based parameter subset selection algorithm in the context of a minimal PBPK (mPBPK) model of the brain for antibody therapeutics. This algorithm is augmented by verification techniques, based on response distributions and energy statistics, to provide a systematic and robust technique to determine identifiable parameter subsets in a PBPK model across a specified time domain of interest. The accuracy of our approach is evaluated for three key concentrations in the mPBPK model for plasma, brain interstitial fluid and brain cerebrospinal fluid. The determination of accurate identifiable parameter subsets is important for model reduction and uncertainty quantification for PBPK models.more » « less
-
Abstract Developing constitutive models that can describe a complex fluid’s response to an applied stimulus has been one of the critical pursuits of rheologists. The complexity of the models typically goes hand-in-hand with that of the observed behaviors and can quickly become prohibitive depending on the choice of materials and/or flow protocols. Therefore, reducing the number of fitting parameters by seeking compact representations of those constitutive models can obviate extra experimentation to confine the parameter space. To this end, fractional derivatives in which the differential response of matter accepts non-integer orders have shown promise. Here, we develop neural networks that are informed by a series of different fractional constitutive models. These fractional rheology-informed neural networks (RhINNs) are then used to recover the relevant parameters (fractional derivative orders) of three fractional viscoelastic constitutive models, i.e., fractional Maxwell, Kelvin-Voigt, and Zener models. We find that for all three studied models, RhINNs recover the observed behavior accurately, although in some cases, the fractional derivative order is recovered with significant deviations from what is known as ground truth. This suggests that extra fractional elements are redundant when the material response is relatively simple. Therefore, choosing a fractional constitutive model for a given material response is contingent upon the response complexity, as fractional elements embody a wide range of transient material behaviors.more » « less
-
We introduce a data-driven fractional modeling framework for complex materials, and particularly bio-tissues. From multi-step relaxation experiments of distinct anatomical locations of porcine urinary bladder, we identify an anomalous relaxation character, with two power-law-like behaviors for short/long long times, and nonlinearity for strains greater than 25%. The first component of our framework is an existence study, to determine admissible fractional viscoelastic models that qualitatively describe linear relaxation. After the linear viscoelastic model is selected, the second stage adds large-strain effects to the framework through a fractional quasi-linear viscoelastic approach for the nonlinear elastic response of the bio-tissue of interest. From single-step relaxation data of the urinary bladder, a fractional Maxwell model captures both short/long-term behaviors with two fractional orders, being the most suitable model for small strains at the first stage. For the second stage, multi-step relaxation data under large strains were employed to calibrate a four-parameter fractional quasi-linear viscoelastic model, that combines a Scott-Blair relaxation function and an exponential instantaneous stress response, to describe the elastin/collagen phases of bladder rheology. Our obtained results demonstrate that the employed fractional quasi-linear model, with a single fractional order in the range α = 0.25–0.30, is suitable for the porcine urinary bladder, producing errors below 2% without need for recalibration over subsequent applied strains. We conclude that fractional models are attractive tools to capture the bladder tissue behavior under small-to-large strains and multiple time scales, therefore being potential alternatives to describe multiple stages of bladder functionality.more » « less
-
One of the most common types of models that helps us to understand neuron behavior is based on the Hodgkin–Huxley ion channel formulation (HH model). A major challenge with inferring parameters in HH models is non-uniqueness: many different sets of ion channel parameter values produce similar outputs for the same input stimulus. Such phenomena result in an objective function that exhibits multiple modes (i.e., multiple local minima). This non-uniqueness of local optimality poses challenges for parameter estimation with many algorithmic optimization techniques. HH models additionally have severe non-linearities resulting in further challenges for inferring parameters in an algorithmic fashion. To address these challenges with a tractable method in high-dimensional parameter spaces, we propose using a particular Markov chain Monte Carlo (MCMC) algorithm, which has the advantage of inferring parameters in a Bayesian framework. The Bayesian approach is designed to be suitable for multimodal solutions to inverse problems. We introduce and demonstrate the method using a three-channel HH model. We then focus on the inference of nine parameters in an eight-channel HH model, which we analyze in detail. We explore how the MCMC algorithm can uncover complex relationships between inferred parameters using five injected current levels. The MCMC method provides as a result a nine-dimensional posterior distribution, which we analyze visually with solution maps or landscapes of the possible parameter sets. The visualized solution maps show new complex structures of the multimodal posteriors, and they allow for selection of locally and globally optimal value sets, and they visually expose parameter sensitivities and regions of higher model robustness. We envision these solution maps as enabling experimentalists to improve the design of future experiments, increase scientific productivity and improve on model structure and ideation when the MCMC algorithm is applied to experimental data.more » « less
An official website of the United States government
