skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: A Data-Driven Memory-Dependent Modeling Framework for Anomalous Rheology: Application to Urinary Bladder Tissue
We introduce a data-driven fractional modeling framework for complex materials, and particularly bio-tissues. From multi-step relaxation experiments of distinct anatomical locations of porcine urinary bladder, we identify an anomalous relaxation character, with two power-law-like behaviors for short/long long times, and nonlinearity for strains greater than 25%. The first component of our framework is an existence study, to determine admissible fractional viscoelastic models that qualitatively describe linear relaxation. After the linear viscoelastic model is selected, the second stage adds large-strain effects to the framework through a fractional quasi-linear viscoelastic approach for the nonlinear elastic response of the bio-tissue of interest. From single-step relaxation data of the urinary bladder, a fractional Maxwell model captures both short/long-term behaviors with two fractional orders, being the most suitable model for small strains at the first stage. For the second stage, multi-step relaxation data under large strains were employed to calibrate a four-parameter fractional quasi-linear viscoelastic model, that combines a Scott-Blair relaxation function and an exponential instantaneous stress response, to describe the elastin/collagen phases of bladder rheology. Our obtained results demonstrate that the employed fractional quasi-linear model, with a single fractional order in the range α = 0.25–0.30, is suitable for the porcine urinary bladder, producing errors below 2% without need for recalibration over subsequent applied strains. We conclude that fractional models are attractive tools to capture the bladder tissue behavior under small-to-large strains and multiple time scales, therefore being potential alternatives to describe multiple stages of bladder functionality.  more » « less
Award ID(s):
1923201
PAR ID:
10359628
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Fractal and Fractional
Volume:
5
Issue:
4
ISSN:
2504-3110
Page Range / eLocation ID:
223
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We develop a fractional return-mapping framework for power-law visco-elasto-plasticity. In our approach, the fractional viscoelasticity is accounted for through canonical combinations of Scott-Blair elements to construct a series of well-known fractional linear viscoelastic models, such as Kelvin–Voigt, Maxwell, Kelvin–Zener, and Poynting–Thomson. We also consider a fractional quasi-linear version of Fung’s model to account for stress/strain nonlinearity. The fractional viscoelastic models are combined with a fractional visco-plastic device, coupled with fractional viscoelastic models involving serial combinations of Scott-Blair elements. We then develop a general return-mapping procedure, which is fully implicit for linear viscoelastic models, and semi-implicit for the quasi-linear case. We find that, in the correction phase, the discrete stress projection and plastic slip have the same form for all the considered models, although with different property and time-step-dependent projection terms. A series of numerical experiments is carried out with analytical and reference solutions to demonstrate the convergence and computational cost of the proposed framework, which is shown to be at least first-order accurate for general loading conditions. Our numerical results demonstrate that the developed framework is more flexible and preserves the numerical accuracy of existing approaches while being more computationally tractable in the visco-plastic range due to a reduction of 50% in CPU time. Our formulation is especially suited for emerging applications of fractional calculus in bio-tissues that present the hallmark of multiple viscoelastic power-laws coupled with visco-plasticity. 
    more » « less
  2. Abstract The heart is a dynamic pump whose function is influenced by its mechanical properties. The viscoelastic properties of the heart, i.e., its ability to exhibit both elastic and viscous characteristics upon deformation, influence cardiac function. Viscoelastic properties change during heart failure (HF), but direct measurements of failing and non-failing myocardial tissue stress relaxation under constant displacement are lacking. Further, how consequences of tissue remodeling, such as fibrosis and fat accumulation, alter the stress relaxation remains unknown. To address this gap, we conducted stress relaxation tests on porcine myocardial tissue to establish baseline properties of cardiac tissue. We found porcine myocardial tissue to be fast relaxing, characterized by stress relaxation tests on both a rheometer and microindenter. We then measured human left ventricle (LV) epicardium and endocardium tissue from non-failing, ischemic HF and non-ischemic HF patients by microindentation. Analyzing by patient groups, we found that ischemic HF samples had slower stress relaxation than non-failing endocardium. Categorizing the data by stress relaxation times, we found that slower stress relaxing tissues were correlated with increased collagen deposition and increased α-smooth muscle actin (α-SMA) stress fibers, a marker of fibrosis and cardiac fibroblast activation, respectively. In the epicardium, analyzing by patient groups, we found that ischemic HF had faster stress relaxation than non-ischemic HF and non-failing. When categorizing by stress relaxation times, we found that faster stress relaxation correlated with Oil Red O staining, a marker for adipose tissue. These data show that changes in stress relaxation vary across the different layers of the heart during ischemic versus non-ischemic HF. These findings reveal how the viscoelasticity of the heart changes, which will lead to better modeling of cardiac mechanics for in vitro and in silico HF models. 
    more » « less
  3. Abstract Traumatic brain injury (TBI), particularly from explosive blasts, is a major cause of casualties in modern military conflicts. Computational models are an important tool in understanding the underlying biomechanics of TBI but are highly dependent on the mechanical properties of soft tissue to produce accurate results. Reported material properties of brain tissue can vary by several orders of magnitude between studies, and no published set of material parameters exists for porcine brain tissue at strain rates relevant to blast. In this work, brain tissue from the brainstem, cerebellum, and cerebrum of freshly euthanized adolescent male Göttingen minipigs was tested in simple shear and unconfined compression at strain rates ranging from quasi-static (QS) to 300 s−1. Brain tissue showed significant strain rate stiffening in both shear and compression. Minimal differences were seen between different regions of the brain. Both hyperelastic and hyper-viscoelastic constitutive models were fit to experimental stress, considering data from either a single loading mode (unidirectional) or two loading modes together (bidirectional). The unidirectional hyper-viscoelastic models with an Ogden hyperelastic representation and a one-term Prony series best captured the response of brain tissue in all regions and rates. The bidirectional models were generally able to capture the response of the tissue in high-rate shear and all compression modes, but not the QS shear. Our constitutive models describe the first set of material parameters for porcine brain tissue relevant to loading modes and rates seen in blast injury. 
    more » « less
  4. null (Ed.)
    Underactive bladder or detrusor underactivity (DUA), that is, not being able to micturate, has received less attention with little research and remains unknown or limited on pathological causes and treatments as opposed to overactive bladder, although the syndrome may pose a risk of urinary infections or life-threatening kidney damage. Here, we present an integrated expandable electronic and optoelectronic complex that behaves as a single body with the elastic, time-dynamic urinary bladder with substantial volume changes up to ~300%. The system configuration of the electronics validated by the theoretical model allows conformal, seamless integration onto the urinary bladder without a glue or suture, enabling precise monitoring with various electrical components for real-time status and efficient optogenetic manipulation for urination at the desired time. In vivo experiments using diabetic DUA models demonstrate the possibility for practical uses of high-fidelity electronics in clinical trials associated with the bladder and other elastic organs. 
    more » « less
  5. Dozois, Charles M. (Ed.)
    ABSTRACT Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) is an emerging cause of hospital-associated urinary tract infections (UTI), especially in catheterized individuals. Despite being rare, MRSA UTI are prone to potentially life-threatening exacerbations such as bacteremia that can be refractory to routine antibiotic therapy. To delineate the molecular mechanisms governing MRSA urinary pathogenesis, we exposed three S. aureus clinical isolates, including two MRSA strains, to human urine for 2 h and analyzed virulence characteristics and changes in gene expression. The in vitro virulence assays showed that human urine rapidly alters adherence to human bladder epithelial cells and fibronectin, hemolysis of sheep red blood cells (RBCs), and surface hydrophobicity in a staphylococcal strain-specific manner. In addition, transcriptome sequencing (RNA-Seq) analysis of uropathogenic strain MRSA-1369 revealed that 2-h-long exposure to human urine alters MRSA transcriptome by modifying expression of genes encoding enzymes catalyzing metabolic pathways, virulence factors, and transcriptional regulators. In summary, our results provide important insights into how human urine specifically and rapidly alters MRSA physiology and facilitates MRSA survival in the nutrient-limiting and hostile urinary microenvironment. IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) is an uncommon cause of urinary tract infections (UTI) in the general population. However, it is important to understand MRSA pathophysiology in the urinary tract because isolation of MRSA in urine samples often precedes potentially life-threatening MRSA bacteremia. In this report, we describe how exposure to human urine alters MRSA global gene expression and virulence. We hypothesize that these alterations may aid MRSA in acclimating to the nutrient-limiting, immunologically hostile conditions within the urinary tract leading to MRSA UTI. 
    more » « less