Flapping ight dynamics constitutes a multi-body, nonlinear, time-varying system. The two major simplifying assumptions in the analysis of apping ight stability are neglecting the wing inertial eects and averaging the dynamics over the apping cycle. The challenges resulting from relaxing these assumptions naturally invoke the geometric control theory as an appropriate analysis tool. In this work, a reduced-order model (extracted from the full model derived in the rst part of this work) for the longitudinal apping ight dynamics near hover is considered and represented in a geometric control framework. Then, combining tools from geometric control theory and averaging, the full dynamic stability as well as balance analyses of hovering insects are performed.
more »
« less
Periodic tilings and auxetic deployments
We investigate geometric characteristics of a specific planar periodic framework with three degrees of freedom. While several avatars of this structural design have been considered in materials science under the name of chiral or missing rib models, all previous studies have addressed only local properties and limited deployment scenarios. We describe the global configuration space of the framework and emphasize the geometric underpinnings of auxetic deformations. Analogous structures may be considered in arbitrary dimension.
more »
« less
- Award ID(s):
- 1703765
- PAR ID:
- 10546994
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Mathematics and Mechanics of Solids
- Volume:
- 26
- Issue:
- 2
- ISSN:
- 1081-2865
- Format(s):
- Medium: X Size: p. 199-216
- Size(s):
- p. 199-216
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We present a systematic geometric framework to study closed quantum systems based on suitably chosen variational families. For the purpose of (A) real time evolution, (B) excitation spectra, (C) spectral functions and (D) imaginary time evolution, we show how the geometric approach highlights the necessity to distinguish between two classes of manifolds: Kähler and non-Kähler. Traditional variational methods typically require the variational family to be a Kähler manifold, where multiplication by the imaginary unit preserves the tangent spaces. This covers the vast majority of cases studied in the literature. However, recently proposed classes of generalized Gaussian states make it necessary to also include the non-Kähler case, which has already been encountered occasionally. We illustrate our approach in detail with a range of concrete examples where the geometric structures of the considered manifolds are particularly relevant. These go from Gaussian states and group theoretic coherent states to generalized Gaussian states.more » « less
-
Geometric image transformations that arise in the real world, such as scaling and rotation, have been shown to easily deceive deep neural networks (DNNs). Hence, training DNNs to be certifiably robust to these perturbations is critical. However, no prior work has been able to incorporate the objective of deterministic certified robustness against geometric transformations into the training procedure, as existing verifiers are exceedingly slow. To address these challenges, we propose the first provable defense for deterministic certified geometric robustness. Our framework leverages a novel GPU-optimized verifier that can certify images between 60× to 42,600× faster than existing geometric robustness verifiers, and thus unlike existing works, is fast enough for use in training. Across multiple datasets, our results show that networks trained via our framework consistently achieve state-of-the-art deterministic certified geometric robustness and clean accuracy. Furthermore, for the first time, we verify the geometric robustness of a neural network for the challenging, real-world setting of autonomous driving.more » « less
-
Abstract Deep generative models have demonstrated effectiveness in learning compact and expressive design representations that significantly improve geometric design optimization. However, these models do not consider the uncertainty introduced by manufacturing or fabrication. The past work that quantifies such uncertainty often makes simplifying assumptions on geometric variations, while the “real-world,” “free-form” uncertainty and its impact on design performance are difficult to quantify due to the high dimensionality. To address this issue, we propose a generative adversarial network-based design under uncertainty framework (GAN-DUF), which contains a deep generative model that simultaneously learns a compact representation of nominal (ideal) designs and the conditional distribution of fabricated designs given any nominal design. This opens up new possibilities of (1) building a universal uncertainty quantification model compatible with both shape and topological designs, (2) modeling free-form geometric uncertainties without the need to make any assumptions on the distribution of geometric variability, and (3) allowing fast prediction of uncertainties for new nominal designs. We can combine the proposed deep generative model with robust design optimization or reliability-based design optimization for design under uncertainty. We demonstrated the framework on two real-world engineering design examples and showed its capability of finding the solution that possesses better performance after fabrication.more » « less
-
Abstract Deep generative models have demonstrated effectiveness in learning compact and expressive design representations that significantly improve geometric design optimization. However, these models do not consider the uncertainty introduced by manufacturing or fabrication. Past work that quantifies such uncertainty often makes simplifying assumptions on geometric variations, while the “real-world”, “free-form” uncertainty and its impact on design performance are difficult to quantify due to the high dimensionality. To address this issue, we propose a Generative Adversarial Network-based Design under Uncertainty Framework (GAN-DUF), which contains a deep generative model that simultaneously learns a compact representation of nominal (ideal) designs and the conditional distribution of fabricated designs given any nominal design. This opens up new possibilities of 1) building a universal uncertainty quantification model compatible with both shape and topological designs, 2) modeling free-form geometric uncertainties without the need to make any assumptions on the distribution of geometric variability, and 3) allowing fast prediction of uncertainties for new nominal designs. We can combine the proposed deep generative model with robust design optimization or reliability-based design optimization for design under uncertainty. We demonstrated the framework on two real-world engineering design examples and showed its capability of finding the solution that possesses better performances after fabrication.more » « less
An official website of the United States government
