We present a generalization of the geometric phase to pure and thermal states in $$\mathcal{PT}$$-symmetric quantum mechanics (PTQM) based on the approach of the interferometric geometric phase (IGP). The formalism first introduces the parallel-transport conditions of quantum states and reveals two geometric phases, $$\theta^1$$ and $$\theta^2$$, for pure states in PTQM according to the states under parallel-transport. Due to the non-Hermitian Hamiltonian in PTQM, $$\theta^1$$ is complex and $$\theta^2$$ is its real part. The imaginary part of $$\theta^1$$ plays an important role when we generalize the IGP to thermal states in PTQM. The generalized IGP modifies the thermal distribution of a thermal state, thereby introducing effective temperatures. \textcolor{red}{At certain critical points, the generalized IGP may exhibit discrete jumps at finite temperatures, signaling a geometric phase transition. We illustrate the IGP of PTQM through two examples and compare their differences}.
more »
« less
Geometry of variational methods: dynamics of closed quantum systems
We present a systematic geometric framework to study closed quantum systems based on suitably chosen variational families. For the purpose of (A) real time evolution, (B) excitation spectra, (C) spectral functions and (D) imaginary time evolution, we show how the geometric approach highlights the necessity to distinguish between two classes of manifolds: Kähler and non-Kähler. Traditional variational methods typically require the variational family to be a Kähler manifold, where multiplication by the imaginary unit preserves the tangent spaces. This covers the vast majority of cases studied in the literature. However, recently proposed classes of generalized Gaussian states make it necessary to also include the non-Kähler case, which has already been encountered occasionally. We illustrate our approach in detail with a range of concrete examples where the geometric structures of the considered manifolds are particularly relevant. These go from Gaussian states and group theoretic coherent states to generalized Gaussian states.
more »
« less
- Award ID(s):
- 1734011
- PAR ID:
- 10248686
- Date Published:
- Journal Name:
- SciPost Physics
- Volume:
- 9
- Issue:
- 4
- ISSN:
- 2542-4653
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A variational formulation for accelerated optimization on normed vector spaces was recently introduced in Wibisono et al. (PNAS 113:E7351–E7358, 2016), and later generalized to the Riemannian manifold setting in Duruisseaux and Leok (SJMDS, 2022a). This variational framework was exploited on normed vector spaces in Duruisseaux et al. (SJSC 43:A2949–A2980, 2021) using time-adaptive geometric integrators to design efficient explicit algorithms for symplectic accelerated optimization, and it was observed that geometric discretizations which respect the time-rescaling invariance and symplecticity of the Lagrangian and Hamiltonian flows were substantially less prone to stability issues, and were therefore more robust, reliable, and computationally efficient. As such, it is natural to develop time-adaptive Hamiltonian variational integrators for accelerated optimization on Riemannian manifolds. In this paper, we consider the case of Riemannian manifolds embedded in a Euclidean space that can be characterized as the level set of a submersion. We will explore how holonomic constraints can be incorporated in discrete variational integrators to constrain the numerical discretization of the Riemannian Hamiltonian system to the Riemannian manifold, and we will test the performance of the resulting algorithms by solving eigenvalue and Procrustes problems formulated as optimization problems on the unit sphere and Stiefel manifold.more » « less
-
null (Ed.)Simulation of quantum systems is challenging due to the exponential size of the state space. Tensor networks provide a systematically improvable approximation for quantum states. 2D tensor networks such as Projected Entangled Pair States (PEPS) are well-suited for key classes of physical systems and quantum circuits. However, direct contraction of PEPS networks has exponential cost, while approximate algorithms require computations with large tensors. We propose new scalable algorithms and software abstractions for PEPS-based methods, accelerating the bottleneck operation of contraction and refactorization of a tensor subnetwork. We employ randomized SVD with an implicit matrix to reduce cost and memory footprint asymptotically. Further, we develop a distributed-memory PEPS library and study accuracy and efficiency of alternative algorithms for PEPS contraction and evolution on the Stampede2 supercomputer. We also simulate a popular near-term quantum algorithm, the Variational Quantum Eigensolver (VQE), and benchmark Imaginary Time Evolution (ITE), which compute ground states of Hamiltonians.more » « less
-
We give a variational proof of a version of the Yau–Tian–Donaldson conjecture for twisted Kähler–Einstein currents, and use this to express the greatest (twisted) Ricci lower bound in terms of a purely algebro-geometric stability threshold. Our approach does not involve a continuity method or the Cheeger–Colding–Tian theory, and uses instead pluripotential theory and valuations. Along the way, we study the relationship between geodesic rays and non-Archimedean metrics.more » « less
-
A variational framework for accelerated optimization was recently introduced on normed vector spaces and Riemannian manifolds in [1] and [2]. It was observed that a careful combination of time-adaptivity and symplecticity in the numerical integration can result in a significant gain in computational efficiency. It is however well known that symplectic integrators lose their near-energy preservation properties when variable time-steps are used. The most common approach to circumvent this problem involves the Poincaré transformation on the Hamiltonian side, and was used in [3] to construct efficient explicit algorithms for symplectic accelerated optimization. However, the current formulations of Hamiltonian variational integrators do not make intrinsic sense on more general spaces such as Riemannian manifolds and Lie groups. In contrast, Lagrangian variational integrators are well-defined on manifolds, so we develop here a framework for time-adaptivity in Lagrangian variational integrators and use the resulting geometric integrators to solve optimization problems on vector spaces and Lie groups.more » « less
An official website of the United States government

