skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unveiling the Effect of Grain Size on Biodegradation of Magnesium
It is known that the grain size plays a major role in the mechanical properties of magnesium. The aim of the present study is to evaluate its role in long‐term corrosion rate. Samples of pure magnesium with grain sizes in the range of 0.9–82 μm are produced through severe plastic deformation and annealing treatments. The mechanical properties are evaluated using tensile tests and the corrosion behavior is evaluated using immersion tests in Hank's solution. A maximum yield stress of ≈150 MPa is observed in the sample with 1.8 μm of grain size and an elongation larger than 25% is observed in the ultrafine‐grained sample. Ultrafine‐ and fine‐grained magnesium display uniform corrosion with a decreasing corrosion rate while coarse‐grained magnesium displays localized corrosion with an accelerated corrosion rate. A corrosion rate of ≈0.2 mm year−1is observed in the ultrafine‐ and fine‐grained magnesium. The corrosion product layer of the fine‐grained magnesium contains elements absorbed from the media. An analysis of the data in the literature suggests that grain refinement changes the corrosion type from localized to uniform corrosion. The exact relationship between grain size and the corrosion rate remains elusive.  more » « less
Award ID(s):
2051205
PAR ID:
10547017
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Engineering Materials
Volume:
26
Issue:
22
ISSN:
1438-1656
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A novel magnesium (Mg)-based metal matrix nanocomposite (MMNC) was fabricated using ultrasonic melt treatment to promote the de-agglomeration of the bioactive glass–ceramic nanoparticles and the homogenization of the melt. The cast samples were then heat treated, machined, and hot rolled to reduce grain size and remove structural defects. Standard mechanical and electrochemical tests were conducted to determine the effect of fabrication and processing on the mechanical and corrosion properties of MMNCs. Compression tests, potentiodynamic polarization tests, electrochemical impedance spectroscopy, and static immersion testing were conducted to determine the characteristics of the MMNCs. The results showed that the combination of ultrasonic melt processing and thermomechanical processing caused the corrosion rate to increase from 8.7 mmpy after 10 days of immersion to 22.25 mmpy when compared with the ultrasonicated MMNCs but remained stable throughout the immersion time, showing no statistically significant change during the incubation periods. These samples also experienced increased yield stress (135.5 MPa) and decreased elongation at break (21.92%) due to the significant amount of grain refinement compared to the ultrasonicated MMNC (σY = 59.6 MPa, elongation = 40.44%). The MMNCs that underwent ultrasonic melt treatment also exhibited significant differences in the corrosion rate calculated from immersion tests. 
    more » « less
  2. Magnesium alloys are emerging as promising alternatives to traditional orthopedic implant materials thanks to their biodegradability, biocompatibility, and impressive mechanical characteristics. However, their rapid in-vivo degradation presents challenges, notably in upholding mechanical integrity over time. This study investigates the impact of high-temperature thermal processing on the mechanical and degradation attributes of a lean Mg-Zn-Ca-Mn alloy, ZX10. Utilizing rapid, cost-efficient characterization methods like X-ray diffraction and optical, we swiftly examine microstructural changes post-thermal treatment. Employing Pearson correlation coefficient analysis, we unveil the relationship between microstructural properties and critical targets (properties): hardness and corrosion resistance. Additionally, leveraging the least absolute shrinkage and selection operator (LASSO), we pinpoint the dominant microstructural factors among closely correlated variables. Our findings underscore the significant role of grain size refinement in strengthening and the predominance of the ternary Ca2Mg6Zn3 phase in corrosion behavior. This suggests that achieving an optimal blend of strength and corrosion resistance is attainable through fine grains and reduced concentration of ternary phases. This thorough investigation furnishes valuable insights into the intricate interplay of processing, structure, and properties in magnesium alloys, thereby advancing the development of superior biodegradable implant materials. 
    more » « less
  3. FeCrAl alloys are promising candidates to replace Zr alloys as fuel cladding materials in nuclear light-water reactors. Grain refinement has been indicated to improve irradiation resistance. To enhance corrosion resistance as well, the effects of grain refinement on steam corrosion behavior were investigated in this work. Samples of Kanthal D alloy (Fe-21Cr-5Al) with two different grain sizes (coarse-grained and ultrafine-grained) were exposed to steam at 1200 °C for 2 hrs. Results indicate improved steam corrosion resistance in ultrafine-grained Kanthal D with formation of a thinner protective Al oxide layer and the presence of a thin underlying Cr oxide layer. 
    more » « less
  4. Advanced structural materials are expected to display significantly improved mechanical properties and this may be achieved, at least in part, by refining the grain size to the submicrometer or the nanocrystalline range. This report provides a detailed summary of the role of grain size in the mechanical properties of metals. The effect of grain size on the high temperature behavior and the development of superplasticity is illustrated using deformation mechanism maps and the development of exceptional strength through grain refinement hardening at low temperatures is also discussed. It is shown that the deformation mechanism of grain boundary sliding, as developed theoretically, can be used to effectively predict both the high and low temperature behavior of metals having different grain sizes. This analysis explains the increase in strain rate sensitivity in ultrafine-grained metals with low and moderate melting points and the ability to increase both the strength and ductility of these materials to thereby overcome the strength-ductility paradox. The recent development of hybrid materials is also reviewed and it is demonstrated that, although these hybrids have received only limited attention to date, they provide a potential for making significant advances in the production of new structural materials. 
    more » « less
  5. There has been a great interest in evaluating the potential of severe plastic deformation (SPD) to improve the performance of magnesium for biological applications. However, different properties and trends, including some contradictions, have been reported. The present study critically reviews the structural features, mechanical properties, corrosion behavior and biological response of magnesium and its alloys processed by SPD, with an emphasis on equal-channel angular pressing (ECAP) and high-pressure torsion (HPT). The unique mechanism of grain refinement in magnesium processed via ECAP causes a large scatter in the final structure, and these microstructural differences can affect the properties and produce difficulties in establishing trends. However, the recent advances in ECAP processing and the increased availability of data from samples produced via HPT clarify that grain refinement can indeed improve the mechanical properties and corrosion resistance without compromising the biological response. It is shown that processing via SPD has great potential for improving the performance of magnesium for biological applications. 
    more » « less