skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2051205

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The magnesium alloy AZ31, which has undergone high-pressure torsion processing, was subjected to in situ annealing microbeam synchrotron high-energy X-ray diffraction and compared to the as-received rolled sheet material that was investigated through in situ neutron diffraction. While the latter only exhibits thermal expansion and minor recovery, the nanostructured specimen displays a complex evolution, including recovery, strong recrystallization, phase transformations, and various regimes of grain growth. Nanometer-scale grain sizes, determined using Williamson–Hall analysis, exhibit seamless growth, aligning with the transition to larger grains, as assessed through the occupancy of single-grain reflections on the diffraction rings. The study uncovers strain anomalies resulting from thermal expansion, segregation of Al atoms, and the kinetics of vacancy creation and annihilation. Notably, a substantial number of excess vacancies were generated through high-pressure torsion and maintained for driving the recrystallization and forming highly activated volumes for diffusion and phase precipitation during heating. The unsystematic scatter observed in the Williamson–Hall plot indicates high dislocation densities following severe plastic deformation, which significantly decrease during recrystallization. Subsequently, dislocations reappear during grain growth, likely in response to torque gradients in larger grains. It is worth noting that the characteristics of unsystematic scatter differ for dislocations created at high and low temperatures, underscoring the strong temperature dependence of slip system activation. Graphical Abstract 
    more » « less
  2. This work presents a multi-scale microstructural characterization of aluminum alloys processed by high-pressure torsion (HPT) and cold angular rolling process (CARP) to improve their mechanical properties. Mechanical properties such as microhardness and tensile strength were correlated with microstructural features. To understand the processing-structure-property relationships, characterization methods spanning nano- to millimeter scales were used, including X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), and scanning transmission electron microscopy (STEM) EDS. TEM and STEM EDS were used to show that HPT of a Mg sheet sandwiched between Al sheets successfully produced a supersaturated solid solution (SSSS) of Mg in Al and several Al-Mg intermetallic phases, leading to significant grain refinement and increases in microhardness over pure Al. Although CARP has potential to induce the severe plastic deformation (SPD), the CARP system used in this work was not able to achieve SPD aluminum alloys. However, SEM EBSD characterization shows that CARP achieves an increase of the low-angle grain boundaries (LAGBs) and geometrically necessary dislocation (GND) density in Al-1043,which improves the mechanical properties. Moreover, a preliminary study was conducted on CAPR processed Al-6061 alloys to understand the synergistic effects precipitation and CARP-processing on the microstructure and properties. This research provides the critical insights into the capabilities and current limitations of CARP as a continuous SPD technique for aluminum alloys, and demonstrate the importance of integrated multi-scale characterization in understanding advanced materials processing. 
    more » « less
    Free, publicly-accessible full text available August 29, 2026
  3. Advanced structural materials are expected to display significantly improved mechanical properties and this may be achieved, at least in part, by refining the grain size to the submicrometer or the nanocrystalline range. This report provides a detailed summary of the role of grain size in the mechanical properties of metals. The effect of grain size on the high temperature behavior and the development of superplasticity is illustrated using deformation mechanism maps and the development of exceptional strength through grain refinement hardening at low temperatures is also discussed. It is shown that the deformation mechanism of grain boundary sliding, as developed theoretically, can be used to effectively predict both the high and low temperature behavior of metals having different grain sizes. This analysis explains the increase in strain rate sensitivity in ultrafine-grained metals with low and moderate melting points and the ability to increase both the strength and ductility of these materials to thereby overcome the strength-ductility paradox. The recent development of hybrid materials is also reviewed and it is demonstrated that, although these hybrids have received only limited attention to date, they provide a potential for making significant advances in the production of new structural materials. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  4. Severe plastic deformation (SPD) has been known for decades to provide microstructural refinement under a hydrostatic stress state by introducing a tremendous quantity of lattice defects, including vacancies, dislocations, and grain boundaries, leading to enhanced mechanical properties. Many SPD processes have been well studied and utilized for the processing of ultrafine-grained (UFG) metals and materials. One major challenge with SPD-processed UFG materials is their limited applicability, primarily due to their microstructural stability at elevated temperatures and the difficulty of scaling up to larger sizes or volumes. To first understand the thermal stability of UFG material, a copper prepared by high-pressure torsion, a technique that can achieve true nano-scale grains in bulk samples, was evaluated using two novel in situ techniques of micro-beam high-energy synchrotron X-ray diffraction. These are, namely, monochromatic X-ray beams that yield changes in microstructure with time and temperature, and a polychromatic X-ray beam that determines grain reorientation behavior during microstructural relaxation. Furthermore, a new processing technique named cold angular rolling process (CARP) demonstrated some promise as an SPD technique for producing theoretically unlimited lengths of strength-enhanced copper sheets at room temperature with a relatively low energy consumption. Additional miniature tensile testing incorporating digital image correlation (DIC) method and microstructural analysis utilizing high-energy X-ray diffraction determined the influence of CARP having higher shear strain hardening in comparison with other established techniques. This study highlights the significance of lattice-defect influenced mechanical properties and microstructure of UFG obtained across multi-length scales and volumes, which are critical for guiding the control and scalable production of advanced materials for commercialization. 
    more » « less
    Free, publicly-accessible full text available May 30, 2026
  5. Bulk nanostructured metals introduced by severe plastic deformation contain an excess of lattice defects. A nanostructured copper (Cu) processed by a high-pressure torsion technique was examined during in situ heating to investigate microstructural relaxation and quantify the evolution of microstructural parameters using high-energy synchrotron microbeam X-ray diffraction. While general microstructural relaxations, such as recovery, recrystallization, and subsequent grain growth, were observed, the key microstructural parameters, including grain size, microstrain, dislocation density, and thermal expansion coefficient, and their changes at critical temperatures were uniquely described and quantified through diffraction data. Based on this analysis, the stored energies driving thermally activated microstructural changes were estimated for individual defect types — grain boundaries, dislocations, and vacancies — that are expected to significantly influence the relaxation behavior of nanostructured Cu. This study demonstrates the effectiveness of diffraction characterization techniques for gaining a comprehensive understanding of the thermal stability of bulk nanostructured materials. 
    more » « less
    Free, publicly-accessible full text available May 15, 2026
  6. Recovery plays distinct roles in nanostructured and coarse-grained metallic materials. While static and dynamic recovery usually soften work-hardened, coarse-grained materials, static recovery has been shown to strengthen nanostructured metals. This study extends this understanding by demonstrating that dynamic recovery can also strengthen nanostructured metals under deformation. Tensile, creep, and plane strain compression tests on nanostructured aluminum reveal a trend of increasing strain-hardening with decreasing strain rate and increasing temperature. Molecular dynamics simulations further indicate that sudden strain rate reductions lead to an initial drop in flow stress, followed by strain hardening. These findings suggest that dynamic recovery could serve as an effective strengthening mechanism for nanostructured metals, offering improvements in uniform elongation. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  7. Al-Mg alloy disks were produced from Mg sandwiched between Al through 100 turns of high-pressure torsion (HPT) at 6.0 GPa at room temperature, resulting in high microhardness of Hv 300–350 in regions experiencing a nominal shear strain >  ~ 390. While compositional mapping using scanning electron microscopy energy-dispersive spectroscopy (EDS) showed a uniform distribution of Mg through the disk thickness at 1.5 mm and 3.0 mm from the disk center, transmission electron microscopy EDS showed a heterogeneous distribution of Mg remained on the nanoscale. Although HPT induces enough mixing to result in face-center-cubic Al with supersaturations of Mg of up to ~ 20 at.% near the disk surfaces, β-Al3Mg2, γ-Al12Mg17 and Al2Mg intermetallic phases were identified by electron diffraction throughout the disk thickness even in regions experiencing high shear strain. This study visually captures detailed compositional heterogeneity throughout the sample thickness following intense mechanical alloying, nanoscale re-structuring and phase transformations. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  8. The static recrystallization and grain growth of a hybrid AZ31/Mg-0.6Gd (wt%) material fabricated by high pressure torsion (HPT) through 20 turns were explored after isochronal annealing at 150, 250, 350 and 450 ◦C for 1 h using electron backscatter diffraction, transmission electron microscopy and Vickers microhardness measurements. The results reveal heterogeneity in the grain size distributions of the AZ31 and Mg-0.6Gd regions after annealing at the lower temperatures of 150 and 250 ◦C leading to a clear AZ31/Mg-0.6Gd interfacial border. At the higher temperatures of 350 and 450 ◦C the AZ31/Mg-0.6Gd interfaces were not well-defined owing to the occurrence of grain growth. It is shown that grain growth is restricted in the AZ31 and Mg-0.6Gd regions due to the presence of stable nano-size Al8Mn5 particles and the precipitation of Mg17Al12 and Mg12Zn at 250 ◦C and of Mg5Gd and Mg12Gd phases at 350 and 450 ◦C. The distribution of the basal texture in both regions was strongly controlled by dynamic recrystallization, precipitation and grain growth. The values of the microhardness over the radial cross-sections of the hybrid discs decrease and become more uniform, in the range of ~35–66 Hv, with increasing annealing temperature. 
    more » « less
    Free, publicly-accessible full text available February 5, 2026
  9. It is known that the grain size plays a major role in the mechanical properties of magnesium. The aim of the present study is to evaluate its role in long‐term corrosion rate. Samples of pure magnesium with grain sizes in the range of 0.9–82 μm are produced through severe plastic deformation and annealing treatments. The mechanical properties are evaluated using tensile tests and the corrosion behavior is evaluated using immersion tests in Hank's solution. A maximum yield stress of ≈150 MPa is observed in the sample with 1.8 μm of grain size and an elongation larger than 25% is observed in the ultrafine‐grained sample. Ultrafine‐ and fine‐grained magnesium display uniform corrosion with a decreasing corrosion rate while coarse‐grained magnesium displays localized corrosion with an accelerated corrosion rate. A corrosion rate of ≈0.2 mm year−1is observed in the ultrafine‐ and fine‐grained magnesium. The corrosion product layer of the fine‐grained magnesium contains elements absorbed from the media. An analysis of the data in the literature suggests that grain refinement changes the corrosion type from localized to uniform corrosion. The exact relationship between grain size and the corrosion rate remains elusive. 
    more » « less