skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Capturing the Dynamics of Dissolved Organic Carbon (DOC) in Tidal Saltmarsh Estuaries Using Remote‐Sensing‐Informed Models
Abstract The fluxes of dissolved organic carbon (DOC) through tidal marsh‐influenced estuaries remain poorly quantified and have been identified as a missing component in carbon‐cycle models. The extreme variability inherent to these ecosystems of the land‐ocean interface challenge our ability to capture DOC‐concentration dynamics and to calculate accurate DOC fluxes. In situ discrete and continuous measurements provide high‐quality estimates of DOC concentration, but these strategies are constrained spatially and temporally and can be costly to operate. Here, field measurements and high‐spatial‐resolution remote sensing were used to train and validate a predictive model of DOC‐concentration distributions in the Plum Island Estuary (PIE), a mesotidal saltmarsh‐influenced estuary in Massachusetts. A large set of field measurements collected between 2017 and 2023 was used to develop and validate an empirical algorithm to retrieve DOC concentration with a ±15% uncertainty from Sentinel‐2 imagery. Implementation on 141 useable images produced a 6‐year time series (2017–2023) of DOC distributions along the thalweg. Analysis of the time series helped identify river discharge, tidal water level (WL), and a marsh enhanced vegetation index 2 as predictors of DOC distribution in the estuary, and facilitated the training and validation of a simple model estimating the distribution. This simple model was able to predict DOC along the PIE thalweg within ±16% of the in situ measurements. Implementation for three years (2020–2022) illustrated how this type of remote‐sensing‐informed models can be coupled with the outputs hydrodynamic models to calculate DOC fluxes in tidal marsh‐influenced estuaries and estimate DOC export to the coastal ocean.  more » « less
Award ID(s):
2224608
PAR ID:
10547177
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
129
Issue:
10
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Blue carbon (C) ecosystems (mangroves, salt marshes, and seagrass beds) sequester high amounts of C, which can be respired back into the atmosphere, buried for long periods, or exported to adjacent ecosystems by tides. The lateral exchange of C between a salt marsh and adjacent water is a key factor that determines whether a salt marsh is a C source (i.e., outwelling) or sink in an estuary. We measured salinity, particulate organic carbon (POC), and dissolved organic carbon (DOC) seasonally over eight tidal cycles in a tidal creek at the Chongming Dongtan wetland from July 2017 to April 2018 to determine whether the marsh was a source or sink for estuarine C. POC and DOC fluxes were significantly correlated in the four seasons driven by water fluxes, but the concentration of DOC and POC were positively correlated only in autumn and winter. DOC and POC concentrations were the highest in autumn (3.54 mg/L and 4.19 mg/L, respectively) and the lowest in winter and spring (1.87 mg/L and 1.51 mg/L, respectively). The tidal creek system in different seasons showed organic carbon (OC) export, and the organic carbon fluxes during tidal cycles ranged from –12.65 to 4.04 g C/m2. The intensity showed significant seasonal differences, with the highest in summer, the second in autumn, and the lowest in spring. In different seasons, organic carbon fluxes during spring tides were significantly higher than that during neap tides. Due to the tidal asymmetry of the Yangtze River estuary and the relatively young stage, the salt marshes in the study area acted as a strong lateral carbon source. 
    more » « less
  2. Abstract The salt balance in estuaries is maintained by the outflow from the river, which removes salt from the estuary, and dispersive processes, which drive downgradient fluxes bringing salt into the estuary. We analyzed the salt fluxes in a realistic model of the North River, a tidal salt marsh estuary, using a quasi-Lagrangian moving plane reference based on the theory of Dronkers and van de Kreeke. Our study confirms their theoretical finding that in a plane moving with the tides, all landward salt flux results directly from shear dispersion, that is, the spatial correlation between cross-sectional variations in velocity and salinity. We separated cross-sectional variations in velocity and salinity not only based on their lateral and vertical components but also by distinct regions of the cross section: the main channel and the marsh. In this way, we quantified the salt flux contributions from vertical and lateral shear dispersion, as well as from trapping—the salt flux due to the difference between the mean velocity and salinity of the main channel compared to the marsh. Trapping accounted for up to half of the total landward salt flux in the estuary during spring tides but decreased to about one-quarter during neap tides. Within the channel, the primary mode of dispersion shifted from lateral shear dispersion due to flow separation during spring tides to vertical shear dispersion due to tidal straining during neap tides. These results demonstrate the important role of topographically induced dispersion on maintaining the salt balance, particularly in tidally dominated estuaries. 
    more » « less
  3. Abstract. Coastal marsh survival relies on the ability to increase elevation and offset sea level rise. It is therefore important to realistically model sediment fluxes between marshes, tidal channels, and bays as sediment availability controls accretion. Traditionally, numerical models have been calibrated and validated using in situ measurements at a few locations within the domain of interest. These datasets typically provide temporal information but lack spatial variability. This paper explores the potential of coupling numerical models with high-resolution remote sensing imagery. Products from three sensors from the NASA Delta-X airborne mission are used. Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) provides vertical water level change on the marshland and was used to adjust the bathymetry and calibrate water fluxes over the marsh. AirSWOT yields water surface elevation within bays, lakes, and channels, and was used to calibrate the Chezy bottom friction coefficient. Finally, imagery from AVIRIS-NG provides maps of total suspended solids (TSS) concentration that were used to calibrate sediment parameters of settling velocity and critical shear stress for erosion. Three numerical models were developed at different locations along coastal Louisiana using Delft3D. The coupling enabled a spatial evaluation of model performance that was not possible using simple point measurements. Overall, the study shows that calibration of numerical models and their general performance will greatly benefit from remote sensing. 
    more » « less
  4. Abstract Around the world, wetland vulnerability to sea‐level rise (SLR) depends on different factors including tidal regimes, topography, creeks and estuary geometry, sediment availability, vegetation type, etc. The Plum Island estuary (PIE) is a mesotidal wetland system on the east coast of the United States. This research applied a newly updated Hydro‐MEM (integrated hydrodynamic‐marsh) model to assess the impacts of intermediate‐low (50 cm), intermediate (1 m), and intermediate‐high (1.5 m) SLR on marsh evolution by the year 2100. Model advancements include capturing vegetation change, inorganic and below and aboveground organic matter portion of marsh platform accretion, and mudflat creation. Although the results indicate a low vulnerability marsh at the PIE, the vegetation changes from high to low marsh under all SLR scenarios (2%–22%), with the higher bounds belonging to higher rise scenarios. Lower SLR produces more productive marsh (13% gain in high productivity regions), whereas the highest SLR scenario causes increased tidal inundation, which leads to loss in productivity (12% change from high to low productivity regions), generation of mudflats (17% of the domain land), and marsh migration to higher lands. Sensitive nonlinear tidal flow changes, which may be increased or decreased with SLR as a result of mudflat creation, marsh migration, and bottom friction change, emphasize the importance of integrated modeling approaches that include dynamic marsh feedbacks in hydrodynamic modeling and varying hydrodynamic effects on the marsh system. 
    more » « less
  5. Abstract Tidal channels are biogeochemical hotspots that horizontally exchange carbon (C) with marsh platforms, but the physiochemical drivers controlling these dynamics are poorly understood. We hypothesized that C‐bearing iron (Fe) oxides precipitate and immobilize dissolved organic carbon (DOC) during ebb tide as the soils oxygenate, and dissolve into the porewater during flood tide, promoting transport to the channel. The hydraulic gradient physically controls how these solutes are horizontally exchanged across the marsh platform‐tidal channel interface; we hypothesized that this gradient alters the concentration and source of C being exchanged. We further hypothesized that trace soil gases (i.e., CO2, CH4, dimethyl sulfide) are pushed out of the channel bank as the groundwater rises. To test these hypotheses, we measured porewater, surface water, and soil trace gases over two 24‐hr monitoring campaigns (i.e., summer and spring) in a mesohaline tidal marsh. We found that Fe2+and DOC were positively related during flood tide but not during ebb tide in spring when soils were more oxidized. This finding shows evidence for the formation and dissolution of C‐bearing Fe oxides across a tidal cycle. In addition, the tidal channel contained significantly (p < 0.05) more terrestrial‐like DOC when the hydraulic gradient was driving flow toward the channel. In comparison, the channel water was saltier and contained significantly (p < 0.05) more marine‐like DOC when the hydraulic gradient reversed direction. Trace gas fluxes increased with rising groundwater levels, particularly dimethyl sulfide. These findings suggest multiple physiochemical mechanisms controlling the horizontal exchange of C at the marsh platform‐tidal channel interface. 
    more » « less