skip to main content

Title: Integrated Modeling of Dynamic Marsh Feedbacks and Evolution Under Sea‐Level Rise in a Mesotidal Estuary (Plum Island, MA, USA)

Around the world, wetland vulnerability to sea‐level rise (SLR) depends on different factors including tidal regimes, topography, creeks and estuary geometry, sediment availability, vegetation type, etc. The Plum Island estuary (PIE) is a mesotidal wetland system on the east coast of the United States. This research applied a newly updated Hydro‐MEM (integrated hydrodynamic‐marsh) model to assess the impacts of intermediate‐low (50 cm), intermediate (1 m), and intermediate‐high (1.5 m) SLR on marsh evolution by the year 2100. Model advancements include capturing vegetation change, inorganic and below and aboveground organic matter portion of marsh platform accretion, and mudflat creation. Although the results indicate a low vulnerability marsh at the PIE, the vegetation changes from high to low marsh under all SLR scenarios (2%–22%), with the higher bounds belonging to higher rise scenarios. Lower SLR produces more productive marsh (13% gain in high productivity regions), whereas the highest SLR scenario causes increased tidal inundation, which leads to loss in productivity (12% change from high to low productivity regions), generation of mudflats (17% of the domain land), and marsh migration to higher lands. Sensitive nonlinear tidal flow changes, which may be increased or decreased with SLR as a result of mudflat creation, marsh migration, and bottom friction change, emphasize the importance of integrated modeling approaches that include dynamic marsh feedbacks in hydrodynamic modeling and varying hydrodynamic effects on the marsh system.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Elevation is a major driver of plant ecology and sediment dynamics in tidal wetlands, so accurate and precise spatial data are essential for assessing wetland vulnerability to sea-level rise and making forecasts. We performed survey-grade elevation and vegetation surveys of the Global Change Research Wetland, a brackish microtidal wetland in the Chesapeake Bay estuary, Maryland (USA), to both intercompare unbiased digital elevation model (DEM) creation techniques and to describe niche partitioning of several common tidal wetland plant species. We identified a tradeoff between scalability and performance in creating unbiased DEMs, with more data intensive methods such as kriging performing better than 3 more scalable methods involving postprocessing of light detection and ranging (LiDAR)-based DEMs. The LiDAR Elevation Correction with Normalized Difference Vegetation Index (LEAN) method provided a compromise between scalability and performance, although it underpredicted variability in elevation. In areas where native plants dominated, the sedge Schoenoplectus americanus occupied more frequently flooded areas (median: 0.22, 95% range: 0.09 to 0.31 m relative to North America Vertical Datum of 1988 [NAVD88]) and the grass Spartina patens, less frequently flooded (0.27, 0.1 to 0.35 m NAVD88). Non-native Phragmites australis dominated at lower elevations more than the native graminoids, but had a wide flooding tolerance, encompassing both their ranges (0.19, −0.05 to 0.36 m NAVD88). The native shrub Iva frutescens also dominated at lower elevations (0.20, 0.04 to 0.30 m NAVD88), despite being previously described as a high marsh species. These analyses not only provide valuable context for the temporally rich but spatially restricted data collected at a single well-studied site, but also provide broad insight into mapping techniques and species zonation. 
    more » « less
  2. Abstract

    The frequency of salt marsh dieback events has increased over the last 25 years with unknown consequences to the resilience of the ecosystem to accelerated sea level rise (SLR). Salt marsh ecosystems impacted by sudden vegetation dieback events were previously thought to recover naturally within a few months to years. In this study, we used a 13‐year collection of remotely sensed imagery to provide evidence that approximately 14% of total marsh area has not revegetated 10 years after a dieback event in Charleston, SC. Dieback onset coincided with a severe drought in 2012, as indicated by the Palmer drought stress index. A second dieback event occurred in 2016 after a historic flood influenced by Hurricane Joaquin in 2015. Unvegetated zones reached nearly 30% of the total marsh area in 2017. We used a light detection and ranging‐derived digital elevation model to determine that most affected areas were associated with lower elevation zones in the interior of the marsh. Further, restoration by grass planting was effective, with pilot‐scale restored plots having greater aboveground biomass than reference sites after two years of transplanting. A positive outcome indicated that the stressors that caused the dieback are no longer present. Despite that, many affected areas have not recovered naturally, even though they are located within the typical elevation range of healthy marshes. A mechanistic modeling approach was used to assess the effects of vegetation dieback on salt marsh resilience to SLR. Predictions indicate that a highly productive restored marsh (2000 g m−2 year−1) would persist at a moderate SLR rate of 60 cm in 100 years, whereas a nonrestored mudflat would lose all its elevation capital after 100 years. Thus, rapid restoration of marsh dieback is critical to avoid further degradation. Also, failure to incorporate the increasing frequency and intensity of extreme climatic events that trigger irreversible marsh diebacks underestimates salt marsh vulnerability to climate change. Finally, at an elevated SLR rate of 122 cm in 100 years, which is most likely an extreme climate change scenario, even highly productive ecosystems augmented by sediment placement would not keep pace with SLR. Thus, climate change mitigation actions are also urgently needed to preserve present‐day marsh ecosystems.

    more » « less
  3. Coastal wetlands are globally important stores of carbon (C). However, accelerated sea-level rise (SLR), increased saltwater intrusion, and modified freshwater discharge can contribute to the collapse of peat marshes, converting coastal peatlands into open water. Applying results from multiple experiments from sawgrass (Cladium jamaicense)-dominated freshwater and brackish water marshes in the Florida Coastal Everglades, we developed a system-level mechanistic peat elevation model (EvPEM). We applied the model to simulate net ecosystem C balance (NECB) and peat elevation in response to elevated salinity under inundation and drought exposure. Using a mass C balance approach, we estimated net gain in C and corresponding export of aquatic fluxes ( ) in the freshwater marsh under ambient conditions (NECB = 1119 ± 229 gC m−2 year−1; FAQ = 317 ± 186 gC m−2 year−1). In contrast, the brackish water marsh exhibited substantial peat loss and aquatic C export with ambient (NECB = −366 ± 15 gC m−2 year−1; FAQ = 311 ± 30 gC m−2 year−1) and elevated salinity (NECB = −594 ± 94 gC m−2 year−1; FAQ = 729 ± 142 gC m−2 year−1) under extended exposed conditions. Further, mass balance suggests a considerable decline in soil C and corresponding elevation loss with elevated salinity and seasonal dry-down. Applying EvPEM, we developed critical marsh net primary productivity (NPP) thresholds as a function of salinity to simulate accumulating, steady-state, and collapsing peat elevations. The optimization showed that ~150–1070 gC m−2 year−1 NPP could support a stable peat elevation (elevation change ≈ SLR), with the corresponding salinity ranging from 1 to 20 ppt under increasing inundation levels. The C budgeting and modeling illustrate the impacts of saltwater intrusion, inundation, and seasonal dry-down and reduce uncertainties in understanding the fate of coastal peat wetlands with SLR and freshwater restoration. The modeling results provide management targets for hydrologic restoration based on the ecological conditions needed to reduce the vulnerability of the Everglades' peat marshes to collapse. The approach can be extended to other coastal peatlands to quantify C loss and improve understanding of the influence of the biological controls on wetland C storage changes for coastal management. 
    more » « less
  4. Abstract

    High tide floods (HTFs) are minor, shallow flooding events whose frequency has increased due to relative sea‐level rise (SLR) and secular changes in tides. Here we isolate and examine the role of historical landscape change (geomorphology, land cover) and SLR on tides and HTF frequency in an urbanized lagoonal estuary: Jamaica Bay, New York. The approach involves data archeology, historical (1870s) map digitization, as well as numerical modeling of the bay. Numerical simulations indicate that a century of landscape alterations (e.g., inlet deepening and widening, channel deepening, and wetland reclamation) increased the mean tidal range at the head of the bay by about 20%. The observed historical shift from the attenuation to amplification of semidiurnal tides is primarily associated with reduced tidal damping at the inlet and increased tidal reflection. The 18% decrease in surface area exerts a minor influence. A 1‐year (2020) water level simulation is used to evaluate the effects of both SLR and altered morphology on the annual number of HTFs. Results show that of 15 “minor flood” events in 2020, only one would have occurred without SLR and two without landscape changes since the 1870s. Spectral and transfer function analyses of water level reveal frequency‐dependent fingerprints of landscape change, with a significant decrease in damping for high‐frequency surges and tides (6–18 hr time scale). By contrast, SLR produced only minor effects on frequency‐dependent amplification. Nonetheless, the geomorphic influence on the dynamical response significantly increases the vulnerability of the system to SLR, particularly high‐tide flooding.

    more » « less
  5. Abstract

    An accelerating global rate of sea level rise (SLR), coupled with direct human impacts to coastal watersheds and shorelines, threatens the continued survival of salt marshes. We developed a new landscape‐scale numerical model of salt marsh evolution and applied it to marshes in the Plum Island Estuary (Massachusetts, U.S.A.), a sediment‐deficient system bounded by steep uplands. To capture complexities of vertical accretion across the marsh platform, we employed a novel approach that incorporates spatially variable suspended sediment concentrations and biomass of multiple plant species as functions of elevation and distance from sediment sources. The model predicts a stable areal extent of Plum Island marshes for a variety of SLR scenarios through 2100, where limited marsh drowning is compensated by limited marsh migration into adjacent uplands. Nevertheless, the model predicts widespread conversion of high marsh vegetation to low marsh vegetation, and accretion deficits that indicate eventual marsh drowning. Although sediment‐deficient marshes bounded by steep uplands are considered extremely vulnerable to SLR, our results highlight that marshes with high elevation capital can maintain their areal extent for decades to centuries even under conditions in which they will inevitably drown.

    more » « less