Abstract Powdery mildew fungi are obligate biotrophic pathogens that only invade plant epidermal cells. There are two epidermal surfaces in every plant leaf: the adaxial (upper) side and the abaxial (lower) side. While both leaf surfaces can be susceptible to adapted powdery mildew fungi in many plant species, there have been observations of leaf abaxial immunity in some plant species including Arabidopsis. The genetic basis of such leaf abaxial immunity remains unknown. In this study, we tested a series of Arabidopsis mutants defective in one or more known defense pathways with the adapted powdery mildew isolate Golovinomyces cichoracearum UCSC1. We found that leaf abaxial immunity was significantly compromised in mutants impaired for both the EDS1/PAD4- and PEN2/PEN3-dependent defenses. Consistently, expression of EDS1–yellow fluorescent protein and PEN2–green fluorescent protein fusions from their respective native promoters in the respective eds1-2 and pen2-1 mutant backgrounds was higher in the abaxial epidermal cells than in the adaxial epidermal cells. Altogether, our results indicate that leaf abaxial immunity against powdery mildew in Arabidopsis is at least partially due to enhanced EDS1/PAD4- and PEN2/PEN3-dependent defenses. Such transcriptionally pre-programmed defense mechanisms may underlie leaf abaxial immunity in other plant species such as hemp and may be exploited for engineering adaxial immunity against powdery mildew fungi in crop plants.
more »
« less
Leaf abaxial and adaxial surfaces differentially affect the interaction of Botrytis cinerea across several eudicots
SUMMARY Eudicot plant species have leaves with two surfaces: the lower abaxial and the upper adaxial surface. Each surface varies in a diversity of components and molecular signals, resulting in potentially different degrees of resistance to pathogens. We tested howBotrytis cinerea, a necrotroph fungal pathogen, interacts with the two different leaf surfaces across 16 crop species and 20 Arabidopsis genotypes. This showed that the abaxial surface is generally more susceptible to the pathogen than the adaxial surface. In Arabidopsis, the differential lesion area between leaf surfaces was associated with jasmonic acid (JA) and salicylic acid (SA) signaling and differential induction of defense chemistry across the two surfaces. When infecting the adaxial surface, leaves mounted stronger defenses by producing more glucosinolates and camalexin defense compounds, partially explaining the differential susceptibility across surfaces. Testing a collection of 96B. cinereastrains showed the genetic heterogeneity of growth patterns, with a few strains preferring the adaxial surface while most are more virulent on the abaxial surface. Overall, we show that leaf–Botrytis interactions are complex with host‐specific, surface‐specific, and strain‐specific patterns.
more »
« less
- Award ID(s):
- 2020754
- PAR ID:
- 10547178
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- The Plant Journal
- ISSN:
- 0960-7412
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Planar structures dramatically increase the surface‐area‐to‐volume ratio, which is critically important for multicellular organisms. In this study, we utilize naturally occurring phenotypic variation among threeSansivieriaspecies (Asperagaceae) to investigate leaf margin expression patterns that are associated with mediolateral and adaxial/abaxial development. We identified differentially expressed genes (DEGs) between center and margin leaf tissues in two planar‐leaf speciesSansevieria subspicataandSansevieria trifasciataand compared these with expression patterns within the cylindrically leavedSansevieria cylindrica. TwoYABBYfamily genes, homologs ofFILAMENTOUS FLOWERandDROOPING LEAF, are overexpressed in the center leaf tissue in the planar‐leaf species and in the tissue of the cylindrical leaves. As mesophyll structure does not indicate adaxial versus abaxial differentiation, increased leaf thickness results in more water‐storage tissue and enhances resistance to aridity. This suggests that the cylindrical‐leaf inS. cylindricais analogous to the central leaf tissue in the planar‐leaf species. Furthermore, the congruence of the expression patterns of theseYABBYgenes inSansevieriawith expression patterns found in other unifacial monocot species suggests that patterns of parallel evolution may be the result of similar solutions derived from a limited developmental toolbox.more » « less
-
Salter, William (Ed.)Abstract Photosynthesis is co-limited by multiple factors depending on the plant and its environment. These include biochemical rate limitations, internal and external water potentials, temperature, irradiance and carbon dioxide ( CO2). Amphistomatous leaves have stomata on both abaxial and adaxial leaf surfaces. This feature is considered an adaptation to alleviate CO2 diffusion limitations in productive environments as the diffusion path length from stomate to chloroplast is effectively halved in amphistomatous leaves. Plants may also reduce CO2 limitations through other aspects of optimal stomatal anatomy: stomatal density, distribution, patterning and size. Some studies have demonstrated that stomata are overdispersed compared to a random distribution on a single leaf surface; however, despite their prevalence in nature and near ubiquity among crop species, much less is known about stomatal anatomy in amphistomatous leaves, especially the coordination between leaf surfaces. Here, we use novel spatial statistics based on simulations and photosynthesis modelling to test hypotheses about how amphistomatous plants may optimize CO2 diffusion in the model angiosperm Arabidopsis thaliana grown in different light environments. We find that (i) stomata are overdispersed, but not ideally dispersed, on both leaf surfaces across all light treatments; (ii) the patterning of stomata on abaxial and adaxial leaf surfaces is independent and (iii) the theoretical improvements to photosynthesis from abaxial–adaxial stomatal coordination are miniscule (≪1%) across the range of feasible parameter space. However, we also find that (iv) stomatal size is correlated with the mesophyll volume that it supplies with CO2, suggesting that plants may optimize CO2 diffusion limitations through alternative pathways other than ideal, uniform stomatal spacing. We discuss the developmental, physical and evolutionary constraints that may prohibit plants from reaching this theoretical adaptive peak of uniform stomatal spacing and inter-surface stomatal coordination. These findings contribute to our understanding of variation in the anatomy of amphistomatous leaves.more » « less
-
Abstract Botrytis cinerea is a fungal pathogen that causes necrotic disease on more than a thousand known hosts widely spread across the plant kingdom. How B. cinerea interacts with such extensive host diversity remains largely unknown. To address this question, we generated an infectivity matrix of 98 strains of B. cinerea on 90 genotypes representing eight host plants. This experimental infectivity matrix revealed that the disease outcome is largely explained by variations in either the host resistance or pathogen virulence. However, the specific interactions between host and pathogen account for 16% of the disease outcome. Furthermore, the disease outcomes cluster among genotypes of a species but are independent of the relatedness between hosts. When analyzing the host specificity and virulence of B. cinerea, generalist strains are predominant. In this fungal necrotroph, specialization may happen by a loss in virulence on most hosts rather than an increase of virulence on a specific host. To uncover the genetic architecture of Botrytis host specificity and virulence, a genome-wide association study (GWAS) was performed and revealed up to 1492 genes of interest. The genetic architecture of these traits is widespread across the B. cinerea genome. The complexity of the disease outcome might be explained by hundreds of functionally diverse genes putatively involved in adjusting the infection to diverse hosts.more » « less
-
Abstract Plant disease resistance is a complex process that is maintained in an intricate balance with development. Increasing evidence indicates the importance of posttranscriptional regulation of plant defense by RNA binding proteins. In a genetic screen for suppressors of Arabidopsis (Arabidopsis thaliana) accelerated cell death 6-1 (acd6-1), a small constitutive defense mutant whose defense level is grossly in a reverse proportion to plant size, we identified an allele of the canonical flowering regulatory gene FLOWERING LOCUS K HOMOLOGY DOMAIN (FLK) encoding a putative protein with triple K homology (KH) repeats. The KH repeat is an ancient RNA binding motif found in proteins from diverse organisms. The relevance of KH-domain proteins in pathogen resistance is largely unexplored. In addition to late flowering, the flk mutants exhibited decreased resistance to the bacterial pathogen Pseudomonas syringae and increased resistance to the necrotrophic fungal pathogen Botrytis cinerea. We further found that the flk mutations compromised basal defense and defense signaling mediated by salicylic acid (SA). Mutant analysis revealed complex genetic interactions between FLK and several major SA pathway genes. RNA-seq data showed that FLK regulates expression abundance of some major defense- and development-related genes as well as alternative splicing of a number of genes. Among the genes affected by FLK is ACD6, whose transcripts had increased intron retentions influenced by the flk mutations. Thus, this study provides mechanistic support for flk suppression of acd6-1 and establishes that FLK is a multifunctional gene involved in regulating pathogen defense and development of plants.more » « less
An official website of the United States government
