The functioning of mycorrhizal symbioses is tied to soil nutrient status, suggesting that nutrient availability should influence the reproduction of mycorrhizal fungi. To quantify the effects of nitrogen (N) and phosphorus (P) availability on ectomycorrhizal fungal fruiting, we collected >4000 epigeous sporocarps representing 19 families during the course of a season in a full factorial NxP addition experiment in six replicate forest stands. Nutrient effects on fruiting shifted as the season progressed, with early fruiting species responding more to P and late-fruiting species responding more to N. The composition of species fruiting in young successional forests differed more with nutrient addition than in mature forests. Sporocarp abundance and species richness were suppressed by N addition. This work shows that N and P availability affect ectomycorrhizal fungal fruiting, with these effects taking place within a context defined by stand age and the progression of fruiting across the season.
more »
« less
Mast seeding in European beech ( Fagus sylvatica L.) is associated with reduced fungal sporocarp production and community diversity
Abstract Mast seeding is a well‐documented phenomenon across diverse forest ecosystems. While its effect on aboveground food webs has been thoroughly studied, how it impacts the soil fungi that drive soil carbon and nutrient cycling has not yet been explored. To evaluate the relationship between mast seeding and fungal resource availability, we paired a Swiss 29‐year fungal sporocarp census with contemporaneous seed production for European beech (Fagus sylvaticaL.). On average, mast seeding was associated with a 55% reduction in sporocarp production and a compositional community shift towards drought‐tolerant taxa across both ectomycorrhizal and saprotrophic guilds. Among ectomycorrhizal fungi, traits associated with carbon cost did not explain species' sensitivity to seed production. Together, our results support a novel hypothesis that mast seeding limits annual resource availability and reproductive investment in soil fungi, creating an ecosystem ‘rhythm’ to forest processes that is synchronized above‐ and belowground.
more »
« less
- Award ID(s):
- 2129312
- PAR ID:
- 10547227
- Editor(s):
- Afkhami, Michelle
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Ecology Letters
- Volume:
- 27
- Issue:
- 6
- ISSN:
- 1461-023X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Wiley (Ed.)ABSTRACT The plant–mycorrhizal fungi relationship can range from mutualistic to parasitic as a function of the fungal taxa involved, plant ontogeny, as well as the availability of resources. Despite the implications this relationship may have on forest carbon cycling and storage, we know little about how mature trees may be impacted by mycorrhizae and how this impact may vary across the landscape. We collected growth data of two arbuscular mycorrhizal fungi (AMF)‐associated tree species,Acer rubrumandA. saccharum, and one ectomycorrhizal fungi (EMF)‐associated tree species,Quercus rubra, to assess how the mycorrhizal fungi–plant association may vary along a gradient of nitrogen (N) availability. Individual assessments of fungal taxa relative abundances showed non‐linear associations with tree growth; positive associations for the two AMF‐associated trees were mostly under low N, whereas positive to neutral associations for the EMF‐associated tree mainly took place at high N. OnlyA. rubrumexhibited greater tree growth with its tree soil‐specific mycorrhizal community when compared with predictions under a random mycorrhizal soil community. Because mycorrhizal fungi are likely to mediate how plants respond to warming, increasing levels of N deposition and of atmospheric CO2, understanding these relationships is critical to accurately forecasting tree growth.more » « less
-
Abstract Ectomycorrhizal (EM) associations can promote the dominance of tree species in otherwise diverse tropical forests. These EM associations between trees and their fungal mutualists have important consequences for soil organic matter cycling, yet the influence of these EM-associated effects on surrounding microbial communities is not well known, particularly in neotropical forests. We examined fungal and prokaryotic community composition in surface soil samples from mixed arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) stands as well as stands dominated by EM-associatedOreomunnea mexicana(Juglandaceae) in four watersheds differing in soil fertility in the Fortuna Forest Reserve, Panama. We hypothesized that EM-dominated stands would support distinct microbial community assemblages relative to the mixed AM-EM stands due to differences in carbon and nitrogen cycling associated with the dominance of EM trees. We expected that this microbiome selection in EM-dominated stands would lead to lower overall microbial community diversity and turnover, with tighter correspondence between general fungal and prokaryotic communities. We measured fungal and prokaryotic community composition via high-throughput Illumina sequencing of theITS2(fungi) and16SrRNA (prokaryotic) gene regions. We analyzed differences in alpha and beta diversity between forest stands associated with different mycorrhizal types, as well as the relative abundance of fungal functional groups and various microbial taxa. We found that fungal and prokaryotic community composition differed based on stand mycorrhizal type. There was lower prokaryotic diversity and lower relative abundance of fungal saprotrophs and pathogens in EM-dominated than AM-EM mixed stands. However, contrary to our prediction, there was lower homogeneity for fungal communities in EM-dominated stands compared to mixed AM-EM stands. Overall, we demonstrate that EM-dominated tropical forest stands have distinct soil microbiomes relative to surrounding diverse forests, suggesting that EM fungi may filter microbial functional groups in ways that could potentially influence plant performance or ecosystem function.more » « less
-
ABSTRACT Specific interactions between bacteria and ectomycorrhizal fungi (EcMF) can benefit plant health, and saprotrophic soil fungi represent a potentially antagonistic guild to these mutualisms. Yet there is little field‐derived experimental evidence showing how the relationship among these three organismal groups manifests across time. To bridge this knowledge gap, we experimentally reduced EcMF in forest soils and monitored both bacterial and fungal soil communities over the course of a year. Our analyses demonstrate that soil trenching shifts the community composition of fungal communities towards a greater abundance of taxa with saprotrophic traits, and this shift is linked to a decrease in both EcMF and a common ectomycorrhizal helper bacterial genus,Burkholderia, in a time‐dependent manner. These results not only reveal the temporal nature of a widespread tripartite symbiosis between bacteria, EcMF and a shared host tree, but they also refine our understanding of the commonly referenced ‘Gadgil effect’ by illustrating the cascading effects of EcMF suppression and implicating soil saprotrophic fungi as potential antagonists on bacterial‐EcMF interactions.more » « less
-
The functioning of mycorrhizal symbioses is tied to soil nutrient status, suggesting that nutrient availability should influence the reproduction of mycorrhizal fungi. To quantify the effects of nitrogen (N) and phosphorus (P) availability on ectomycorrhizal fungal fruiting, we collected > 4,000 epigeous sporocarps representing 19 families during the course of a season in a full factorial NxP addition experiment in six replicate forest stands. Nutrient effects on fruiting shifted as the season progressed, with early fruiting species responding more to P and late-fruiting species responding more to N. The composition of species fruiting in young successional forests differed more with nutrient addition than in mature forests. Sporocarp abundance and species richness were suppressed by N addition. This work shows that N and P availability affect ectomycorrhizal fungal fruiting, with these effects taking place within a context defined by stand age and the progression of fruiting across the season. The data table in this data package contains the sprorocarp observation counts and biomass. Corresponding DNA sequences can be found in GenBank at: https://www.ncbi.nlm.nih.gov/nuccore/?term=MT345178%3AMT345282%5Baccn%5D Additional detail on the MELNHE project, including a datatable of site descriptions and a pdf file with the project description and diagram of plot configuration can be found in this data package: https://portal.edirepository.org/nis/mapbrowse?packageid=knb-lter-hbr.344.2 These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.more » « less
An official website of the United States government

