Abstract Freshwater wetlands process large amounts of nutrients originating from agricultural fields. Yet, these systems also have the potential to produce substantial amounts of nitrous oxide (N2O) and methane (CH4), both potent greenhouse gasses (GHGs). Agricultural land use alters delivery of nutrients and carbon (C) to downstream wetlands, and changing climate is altering hydroperiods. These drivers modulate wetland microbial processes responsible for GHG production including denitrification and methanogenesis. Studies have correlated GHGs to C quantity and nutrients independently; fewer studies identify how nutrients and C composition interact to modulate GHG concentrations in wetlands. In wetlands located in Indiana, USA, we studied how CH4, N2O, and carbon dioxide (CO2) correlated to C quantity and composition, nutrient concentrations, size, hydrology, and surrounding agricultural land use. CH4production was correlated to dissolved organic carbon (DOC) concentrations and composition using UV‐Vis spectroscopy. CH4concentrations were positively correlated to spectral slope from 275 to 295 nm, an indicator of autochthonous primary production, and negatively correlated to humification index. N2O concentrations positively correlated to total dissolved nitrogen and humification index (HIX). CH4concentrations were highest in the large wetland with negligible canopy cover, dense macrophytes and algae, and high concentrations of autochthonous‐like DOC. Thus, we suspect phototrophic methanogenesis is an important driver of CH4variation across systems. Concentrations of N2O were highest in the agricultural wetland, likely driven by higher NO3−concentrations. Our findings suggest agricultural nutrients strongly shift greenhouse gas production profiles but do not necessarily increase global warming potential of GHGs released by wetlands.
more »
« less
CO2 and CH4 Concentrations in Headwater Wetlands Influenced by Morphology and Changing Hydro-Biogeochemical Conditions
Abstract Headwater wetlands are important sites for carbon storage and emissions. While local- and landscape-scale factors are known to influence wetland carbon biogeochemistry, the spatial and temporal heterogeneity of these factors limits our predictive understanding of wetland carbon dynamics. To address this issue, we examined relationships between carbon dioxide (CO2) and methane (CH4) concentrations with wetland hydrogeomorphology, water level, and biogeochemical conditions. We sampled water chemistry and dissolved gases (CO2and CH4) and monitored continuous water level at 20 wetlands and co-located upland wells in the Delmarva Peninsula, Maryland, every 1–3 months for 2 years. We also obtained wetland hydrogeomorphologic metrics at maximum inundation (area, perimeter, and volume). Wetlands in our study were supersaturated with CO2(mean = 315 μM) and CH4(mean = 15 μM), highlighting their potential role as carbon sources to the atmosphere. Spatial and temporal variability in CO2and CH4concentrations was high, particularly for CH4, and both gases were more spatially variable than temporally. We found that groundwater is a potential source of CO2in wetlands and CO2decreases with increased water level. In contrast, CH4concentrations appear to be related to substrate and nutrient availability and to drying patterns over a longer temporal scale. At the landscape scale, wetlands with higher perimeter:area ratios and wetlands with higher height above the nearest drainage had higher CO2and CH4concentrations. Understanding the variability of CO2and CH4in wetlands, and how these might change with changing environmental conditions and across different wetland types, is critical to understanding the current and future role of wetlands in the global carbon cycle.
more »
« less
- Award ID(s):
- 1856200
- PAR ID:
- 10547431
- Publisher / Repository:
- Journal
- Date Published:
- Journal Name:
- Ecosystems
- ISSN:
- 1432-9840
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Fluxes of carbon dioxide (CO2) and methane (CH4) from open water bodies are critical components of carbon‐climate feedbacks in high latitudes. Processes governing the spatial and temporal variability of these aquatic greenhouse gas (GHG) fluxes are still highly uncertain due to limited observational data sets and lack of modeling studies incorporating comprehensive thermal and biochemical processes. This research investigates how slight variations in climate propagate through the biogeochemical cycles of ponds and resulting impacts on GHG emissions. We examine the thermal and biogeochemical dynamics of two ponds in the Yukon–Kuskokwim Delta, Alaska, under varying climatic conditions to study the impacts on CO2, CH4, and oxygen (O2) concentrations and fluxes. We performed multiple numerical experiments, using the LAKE process‐based model and field measurements, to analyze how these ponds respond to variations in air temperature, shortwave radiation, and snow cover. Our study demonstrates that ice cover duration and water temperature are primary climatic drivers of GHG fluxes. Climate experiments led to reductions in ice cover duration and increased water temperatures, which subsequently enhanced CH4and CO2gas emissions from two study ponds. On average, cumulative CH4and CO2emissions were 5% and 10% higher, respectively, under increases in air temperature and shortwave radiation. Additionally, we uncovered a need to incorporate groundwater influxes of dissolved gases and nutrients in order to fully represent processes governing aquatic biochemical activity. Our work highlights the importance of understanding local‐scale processes in predicting future Arctic contributions to GHG emissions.more » « less
-
Abstract Tidal salt marshes produce and emit CH4. Therefore, it is critical to understand the biogeochemical controls that regulate CH4spatial and temporal dynamics in wetlands. The prevailing paradigm assumes that acetoclastic methanogenesis is the dominant pathway for CH4production, and higher salinity concentrations inhibit CH4production in salt marshes. Recent evidence shows that CH4is produced within salt marshes via methylotrophic methanogenesis, a process not inhibited by sulfate reduction. To further explore this conundrum, we performed measurements of soil–atmosphere CH4and CO2fluxes coupled with depth profiles of soil CH4and CO2pore water gas concentrations, stable and radioisotopes, pore water chemistry, and microbial community composition to assess CH4production and fate within a temperate tidal salt marsh. We found unexpectedly high CH4concentrations up to 145,000 μmol mol−1positively correlated with S2−(salinity range: 6.6–14.5 ppt). Despite large CH4production within the soil, soil–atmosphere CH4fluxes were low but with higher emissions and extreme variability during plant senescence (84.3 ± 684.4 nmol m−2 s−1). CH4and CO2within the soil pore water were produced from young carbon, with most Δ14C‐CH4and Δ14C‐CO2values at or above modern. We found evidence that CH4within soils was produced by methylotrophic and hydrogenotrophic methanogenesis. Several pathways exist after CH4is produced, including diffusion into the atmosphere, CH4oxidation, and lateral export to adjacent tidal creeks; the latter being the most likely dominant flux. Our findings demonstrate that CH4production and fluxes are biogeochemically heterogeneous, with multiple processes and pathways that can co‐occur and vary in importance over the year. This study highlights the potential for high CH4production, the need to understand the underlying biogeochemical controls, and the challenges of evaluating CH4budgets and blue carbon in salt marshes.more » « less
-
Abstract Significant progress in permafrost carbon science made over the past decades include the identification of vast permafrost carbon stocks, the development of new pan‐Arctic permafrost maps, an increase in terrestrial measurement sites for CO2and methane fluxes, and important factors affecting carbon cycling, including vegetation changes, periods of soil freezing and thawing, wildfire, and other disturbance events. Process‐based modeling studies now include key elements of permafrost carbon cycling and advances in statistical modeling and inverse modeling enhance understanding of permafrost region C budgets. By combining existing data syntheses and model outputs, the permafrost region is likely a wetland methane source and small terrestrial ecosystem CO2sink with lower net CO2uptake toward higher latitudes, excluding wildfire emissions. For 2002–2014, the strongest CO2sink was located in western Canada (median: −52 g C m−2 y−1) and smallest sinks in Alaska, Canadian tundra, and Siberian tundra (medians: −5 to −9 g C m−2 y−1). Eurasian regions had the largest median wetland methane fluxes (16–18 g CH4m−2 y−1). Quantifying the regional scale carbon balance remains challenging because of high spatial and temporal variability and relatively low density of observations. More accurate permafrost region carbon fluxes require: (a) the development of better maps characterizing wetlands and dynamics of vegetation and disturbances, including abrupt permafrost thaw; (b) the establishment of new year‐round CO2and methane flux sites in underrepresented areas; and (c) improved models that better represent important permafrost carbon cycle dynamics, including non‐growing season emissions and disturbance effects.more » « less
-
Abstract Methane (CH4) dynamics in wetlands are spatially variable and difficult to estimate at ecosystem scales. Patches with different plant functional types (PFT) represent discrete units within wetlands that may help characterize patterns in CH4variability. We investigate dissolved porewater CH4concentrations, a representation of net CH4production and potential source of atmospheric flux, in five wetland patches characterized by a dominant PFT or lack of plants. Using soil, porewater, and plant variables we hypothesized to influence CH4, we used three modeling approaches—Classification and regression tree, AIC model selection, and Structural Equation Modeling—to identify direct and indirect influences on porewater CH4dynamics. Across all three models, dissolved porewater CO2concentration was the dominant driver of CH4concentrations, partly through the influence of PFT patches. Plants in each patch type likely had variable influence on CH4via root exudates (a substrate for methanogens), capacity to transport gas (both O2from and CH4to the atmosphere), and plant litter quality which impacted soil respiration and production of CO2in the porewater. We attribute the importance of CO2to the dominant methanogenic pathway we identified, which uses CO2as a terminal electron acceptor. We propose a mechanistic relationship between PFT patches and porewater CH4dynamics which, when combined with sources of CH4loss including methanotrophy, oxidation, or plant‐mediated transport, can provide patch‐scale estimates of CH4flux. Combining these estimates with the distribution of PFTs can improve ecosystem CH4flux estimates in heterogenous wetlands and improve global CH4budgets.more » « less
An official website of the United States government

