skip to main content


This content will become publicly available on March 2, 2025

Title: RELIEF: Relieving Memory Pressure In SoCs Via Data Movement-Aware Accelerator Scheduling
Data movement latency when using on-chip accelerators in emerging heterogeneous architectures is a serious performance bottleneck. While hardware/software mechanisms such as peer-to-peer DMA between producer/consumer accelerators allow bypassing main memory and significantly reduce main memory contention, schedulers in both the hardware and software domains remain oblivious to their presence. Instead, most contemporary schedulers tend to be deadline-driven, with improved utilization and/or throughput serving as secondary or co-primary goals. This lack of focus on data communication will only worsen execution times as accelerator latencies reduce. In this paper, we present RELIEF (RElaxing Least-laxIty to Enable Forwarding), an online least laxity-driven accelerator scheduling policy that relieves memory pressure in accelerator-rich architectures via data movement-aware scheduling. RELIEF leverages laxity (time margin to a deadline) to opportunistically utilize available hardware data forwarding mechanisms while minimizing quality-of-service (QoS) degradation and unfairness. RELIEF achieves up to 50% more forwards compared to state-of- the-art policies, reducing main memory traffic and energy consumption by up to 32% and 18%, respectively. At the same time, RELIEF meets 14% more task deadlines on average and reduces worst-case deadline violation by 14%, highlighting QoS and fairness improvements.  more » « less
Award ID(s):
1900803
PAR ID:
10547557
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-9313-2
Page Range / eLocation ID:
1063 to 1079
Subject(s) / Keyword(s):
Accelerators, scheduling, data movement
Format(s):
Medium: X
Location:
Edinburgh, United Kingdom
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Graph processing workloads are memory intensive with irregular access patterns and large memory footprint resulting in low data locality. Their popular software implementations typically employ either Push or Pull style propagation of changes through the graph over multiple iterations that follow the Bulk Synchronous Model. The performance of these algorithms on traditional computing systems is limited by random reads/writes of vertex values, synchronization overheads, and additional overheads for tracking active sets of vertices or edges across iterations. In this paper, we present GraphPulse, a hardware framework for asynchronous graph processing with event-driven scheduling that overcomes the performance limitations of software frameworks. Event-driven computation model enables a parallel dataflow-style execution where atomic updates and active sets tracking are inherent to the model; thus, scheduling complexity is reduced and scalability is enhanced. The dataflow nature of the architecture also reduces random reads of vertex values by carrying the values in the events themselves. We capitalize on the update properties commonly present in graph algorithms to coalesce in-flight events and substantially reduce the event storage requirement and the processing overheads incurred. GraphPulse event-model naturally supports asynchronous graph processing, enabling substantially faster convergence by exploiting available parallelism, reducing work, and eliminating synchronization at iteration boundaries. The framework provides easy to use programming interface for faster development of hardware graph accelerators. A single GraphPulse accelerator achieves up to 74x speedup (28x on average) over Ligra, a state of the art software framework, running on a 12 core CPU. It also achieves an average of 6.2x speedup over Graphicionado, a state of the art graph processing accelerator. 
    more » « less
  2. Deep neural networks (DNNs) are gaining popularity in a wide range of domains, ranging from speech and video recognition to healthcare. With this increased adoption comes the pressing need for securing DNN execution environments on CPUs, GPUs, and ASICs. While there are active research efforts in supporting a trusted execution environment (TEE) on CPUs, the exploration in supporting TEEs on accelerators is limited, with only a few solutions available. A key limitation along this line of work is that these secure DNN accelerators narrowly consider a few specific architectures. The design choices and the associated cost for securing these architectures do not transfer to other diverse architectures. This paper strives to address this limitation by developing a design space exploration tool for supporting TEEs on diverse DNN accelerators. We target secure DNN accelerators equipped with cryptographic engines where the cryptographic operations are closely coupled with the data movement in the accelerators. These operations significantly complicate the scheduling for DNN accelerators, as the scheduling needs to account for the extra on-chip computation and off-chip memory accesses introduced by these cryptographic operations, and even needs to account for potential interactions across DNN layers. We tackle these challenges in our tool, called SecureLoop, by introducing a scheduling search engine with the following attributes: 1) considers the cryptographic overhead associated with every offchip data access, 2) uses an efficient modular arithmetic technique to compute the optimal authentication block assignment for each individual layer, and 3) uses a simulated annealing algorithm to perform cross-layer optimizations. Compared to the conventional schedulers, our tool finds the schedule for secure DNN designs with up to 33.2% speedup and 50.2% improvement of energy-delay product. 
    more » « less
  3. The advent of machine learning (ML) and deep learning applications has led to the development of a multitude of hardware accelerators and architectural optimization techniques for parallel architectures. This is due in part to the regularity and parallelism exhibited by the ML workloads, especially convolutional neural networks (CNNs). However, CPUs continue to be one of the dominant compute fabric in datacenters today, thereby also being widely deployed for inference tasks. As CNNs grow larger, the inherent limitations of a CPU-based system become apparent, specifically in terms of main memory data movement. In this paper, we present CASH, a compiler-assisted hardware solution that eliminates redundant data-movement to and from the main memory and, therefore, reduces main memory bandwidth and energy consumption. Our experimental evaluations on a set of four different state-of-the-art CNN workloads indicate that CASH provides, on average, ~40% and ~18% reductions in main memory bandwidth and energy consumption, respectively. 
    more » « less
  4. null (Ed.)
    Genomics is the foundation of precision medicine, global food security and virus surveillance. Exact-match is one of the most essential operations widely used in almost every step of genomics such as alignment, assembly, annotation, and compression. Modern genomics adopts Ferragina-Manzini Index (FMIndex) augmenting space-efficient Burrows-Wheeler transform (BWT) with additional data structures to permit ultra-fast exact-match operations. However, FM-Index is notorious for its poor spatial locality and random memory access pattern. Prior works create GPU-, FPGA-, ASIC- and even process-in-memory (PIM)based accelerators to boost FM-Index search throughput. Though they achieve the state-of-the-art FM-Index search throughput, the same as all prior conventional accelerators, FM-Index PIMs process only one DNA symbol after each DRAM row activation, thereby suffering from poor memory bandwidth utilization. In this paper, we propose a hardware accelerator, EXMA, to enhance FM-Index search throughput. We first create a novel EXMA table with a multi-task-learning (MTL)-based index to process multiple DNA symbols with each DRAM row activation. We then build an accelerator to search over an EXMA table. We propose 2-stage scheduling to increase the cache hit rate of our accelerator. We introduce dynamic page policy to improve the row buffer hit rate of DRAM main memory. We also present CHAIN compression to reduce the data structure size of EXMA tables. Compared to state-of-the-art FM-Index PIMs, EXMA improves search throughput by 4.9 ×, and enhances search throughput per Watt by 4.8×. 
    more » « less
  5. Cloud deployments now increasingly exploit Field-Programmable Gate Array (FPGA) accelerators as part of virtual instances. While cloud FPGAs are still essentially single-tenant, the growing demand for efficient hardware acceleration paves the way to FPGA multi-tenancy. It then becomes necessary to explore architectures, design flows, and resource management features that aim at exposing multi-tenant FPGAs to the cloud users. In this article, we discuss a hardware/software architecture that supports provisioning space-shared FPGAs in Kernel-based Virtual Machine (KVM) clouds. The proposed hardware/software architecture introduces an FPGA organization that improves hardware consolidation and support hardware elasticity with minimal data movement overhead. It also relies on VirtIO to decrease communication latency between hardware and software domains. Prototyping the proposed architecture with a Virtex UltraScale+ FPGA demonstrated near specification maximum frequency for on-chip data movement and high throughput in virtual instance access to hardware accelerators. We demonstrate similar performance compared to single-tenant deployment while increasing FPGA utilization, which is one of the goals of virtualization. Overall, our FPGA design achieved about 2× higher maximum frequency than the state of the art and a bandwidth reaching up to 28 Gbps on 32-bit data width. 
    more » « less