Real-time systems are widely applied in different areas like autonomous vehicles, where safety is the key metric. However, on the FPGA platform, most of the prior accelerator frameworks omit discussing the schedulability in such real-time safety-critical systems, leaving deadlines unmet, which can lead to catastrophic system failures. To address this, we propose the ART framework, a hardware-software co-design approach that transforms baseline accelerators into “real-time guaranteed" accelerators. On the software side, ART performs schedulability analysis and preemption point placement, optimizing task scheduling to meet deadlines and enhance throughput. On the hardware side, ART integrates the Global Earliest Deadline First (GEDF) scheduling algorithm, implements preemption, and conducts source code transformation to transform baseline HLS-based accelerators into designs targeted for real-time systems capable of saving and resuming tasks. ART also includes integration, debugging, and testing tools for full-system implementation. We demonstrate the methodology of ART on two kinds of popular accelerator models and evaluate on AMD Versal VCK190 platform, where ART meets schedulability requirements that baseline accelerators fail. ART is lightweight, utilizing <0.5% resources. With about 100 lines of user input, ART generates about 2.5k lines of accelerator code, making it a push-button solution. 
                        more » 
                        « less   
                    
                            
                            RELIEF: Relieving Memory Pressure In SoCs Via Data Movement-Aware Accelerator Scheduling
                        
                    
    
            Data movement latency when using on-chip accelerators in emerging heterogeneous architectures is a serious performance bottleneck. While hardware/software mechanisms such as peer-to-peer DMA between producer/consumer accelerators allow bypassing main memory and significantly reduce main memory contention, schedulers in both the hardware and software domains remain oblivious to their presence. Instead, most contemporary schedulers tend to be deadline-driven, with improved utilization and/or throughput serving as secondary or co-primary goals. This lack of focus on data communication will only worsen execution times as accelerator latencies reduce. In this paper, we present RELIEF (RElaxing Least-laxIty to Enable Forwarding), an online least laxity-driven accelerator scheduling policy that relieves memory pressure in accelerator-rich architectures via data movement-aware scheduling. RELIEF leverages laxity (time margin to a deadline) to opportunistically utilize available hardware data forwarding mechanisms while minimizing quality-of-service (QoS) degradation and unfairness. RELIEF achieves up to 50% more forwards compared to state-of- the-art policies, reducing main memory traffic and energy consumption by up to 32% and 18%, respectively. At the same time, RELIEF meets 14% more task deadlines on average and reduces worst-case deadline violation by 14%, highlighting QoS and fairness improvements. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1900803
- PAR ID:
- 10547557
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-9313-2
- Page Range / eLocation ID:
- 1063 to 1079
- Subject(s) / Keyword(s):
- Accelerators, scheduling, data movement
- Format(s):
- Medium: X
- Location:
- Edinburgh, United Kingdom
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Graph processing workloads are memory intensive with irregular access patterns and large memory footprint resulting in low data locality. Their popular software implementations typically employ either Push or Pull style propagation of changes through the graph over multiple iterations that follow the Bulk Synchronous Model. The performance of these algorithms on traditional computing systems is limited by random reads/writes of vertex values, synchronization overheads, and additional overheads for tracking active sets of vertices or edges across iterations. In this paper, we present GraphPulse, a hardware framework for asynchronous graph processing with event-driven scheduling that overcomes the performance limitations of software frameworks. Event-driven computation model enables a parallel dataflow-style execution where atomic updates and active sets tracking are inherent to the model; thus, scheduling complexity is reduced and scalability is enhanced. The dataflow nature of the architecture also reduces random reads of vertex values by carrying the values in the events themselves. We capitalize on the update properties commonly present in graph algorithms to coalesce in-flight events and substantially reduce the event storage requirement and the processing overheads incurred. GraphPulse event-model naturally supports asynchronous graph processing, enabling substantially faster convergence by exploiting available parallelism, reducing work, and eliminating synchronization at iteration boundaries. The framework provides easy to use programming interface for faster development of hardware graph accelerators. A single GraphPulse accelerator achieves up to 74x speedup (28x on average) over Ligra, a state of the art software framework, running on a 12 core CPU. It also achieves an average of 6.2x speedup over Graphicionado, a state of the art graph processing accelerator.more » « less
- 
            Deep neural networks (DNNs) are gaining popularity in a wide range of domains, ranging from speech and video recognition to healthcare. With this increased adoption comes the pressing need for securing DNN execution environments on CPUs, GPUs, and ASICs. While there are active research efforts in supporting a trusted execution environment (TEE) on CPUs, the exploration in supporting TEEs on accelerators is limited, with only a few solutions available. A key limitation along this line of work is that these secure DNN accelerators narrowly consider a few specific architectures. The design choices and the associated cost for securing these architectures do not transfer to other diverse architectures. This paper strives to address this limitation by developing a design space exploration tool for supporting TEEs on diverse DNN accelerators. We target secure DNN accelerators equipped with cryptographic engines where the cryptographic operations are closely coupled with the data movement in the accelerators. These operations significantly complicate the scheduling for DNN accelerators, as the scheduling needs to account for the extra on-chip computation and off-chip memory accesses introduced by these cryptographic operations, and even needs to account for potential interactions across DNN layers. We tackle these challenges in our tool, called SecureLoop, by introducing a scheduling search engine with the following attributes: 1) considers the cryptographic overhead associated with every offchip data access, 2) uses an efficient modular arithmetic technique to compute the optimal authentication block assignment for each individual layer, and 3) uses a simulated annealing algorithm to perform cross-layer optimizations. Compared to the conventional schedulers, our tool finds the schedule for secure DNN designs with up to 33.2% speedup and 50.2% improvement of energy-delay product.more » « less
- 
            Cloud deployments now increasingly exploit Field-Programmable Gate Array (FPGA) accelerators as part of virtual instances. While cloud FPGAs are still essentially single-tenant, the growing demand for efficient hardware acceleration paves the way to FPGA multi-tenancy. It then becomes necessary to explore architectures, design flows, and resource management features that aim at exposing multi-tenant FPGAs to the cloud users. In this article, we discuss a hardware/software architecture that supports provisioning space-shared FPGAs in Kernel-based Virtual Machine (KVM) clouds. The proposed hardware/software architecture introduces an FPGA organization that improves hardware consolidation and support hardware elasticity with minimal data movement overhead. It also relies on VirtIO to decrease communication latency between hardware and software domains. Prototyping the proposed architecture with a Virtex UltraScale+ FPGA demonstrated near specification maximum frequency for on-chip data movement and high throughput in virtual instance access to hardware accelerators. We demonstrate similar performance compared to single-tenant deployment while increasing FPGA utilization, which is one of the goals of virtualization. Overall, our FPGA design achieved about 2× higher maximum frequency than the state of the art and a bandwidth reaching up to 28 Gbps on 32-bit data width.more » « less
- 
            Compute heterogeneity is increasingly gaining prominence in modern datacenters due to the addition of accelerators like GPUs and FPGAs. We observe that datacenter schedulers are agnostic of these emerging accelerators, especially their resource utilization footprints, and thus, not well equipped to dynamically provision them based on the application needs. We observe that the state-of-the-art datacenter schedulers fail to provide fine-grained resource guarantees for latency-sensitive tasks that are GPU-bound. Specifically for GPUs, this results in resource fragmentation and interference leading to poor utilization of allocated GPU resources. Furthermore, GPUs exhibit highly linear energy efficiency with respect to utilization and hence proactive management of these resources is essential to keep the operational costs low while ensuring the end-to-end Quality of Service (QoS) in case of user-facing queries.Towards addressing the GPU orchestration problem, we build Knots, a GPU-aware resource orchestration layer and integrate it with the Kubernetes container orchestrator to build Kube- Knots. Kube-Knots can dynamically harvest spare compute cycles through dynamic container orchestration enabling co-location of latency-critical and batch workloads together while improving the overall resource utilization. We design and evaluate two GPU-based scheduling techniques to schedule datacenter-scale workloads through Kube-Knots on a ten node GPU cluster. Our proposed Correlation Based Prediction (CBP) and Peak Prediction (PP) schemes together improves both average and 99 th percentile cluster-wide GPU utilization by up to 80% in case of HPC workloads. In addition, CBP+PP improves the average job completion times (JCT) of deep learning workloads by up to 36% when compared to state-of-the-art schedulers. This leads to 33% cluster-wide energy savings on an average for three different workloads compared to state-of-the-art GPU-agnostic schedulers. Further, the proposed PP scheduler guarantees the end-to-end QoS for latency-critical queries by reducing QoS violations by up to 53% when compared to state-of-the-art GPU schedulers.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    