skip to main content

Title: Kube-Knots: Resource Harvesting through Dynamic Container Orchestration in GPU-based Datacenters
Compute heterogeneity is increasingly gaining prominence in modern datacenters due to the addition of accelerators like GPUs and FPGAs. We observe that datacenter schedulers are agnostic of these emerging accelerators, especially their resource utilization footprints, and thus, not well equipped to dynamically provision them based on the application needs. We observe that the state-of-the-art datacenter schedulers fail to provide fine-grained resource guarantees for latency-sensitive tasks that are GPU-bound. Specifically for GPUs, this results in resource fragmentation and interference leading to poor utilization of allocated GPU resources. Furthermore, GPUs exhibit highly linear energy efficiency with respect to utilization and hence proactive management of these resources is essential to keep the operational costs low while ensuring the end-to-end Quality of Service (QoS) in case of user-facing queries.Towards addressing the GPU orchestration problem, we build Knots, a GPU-aware resource orchestration layer and integrate it with the Kubernetes container orchestrator to build Kube- Knots. Kube-Knots can dynamically harvest spare compute cycles through dynamic container orchestration enabling co-location of latency-critical and batch workloads together while improving the overall resource utilization. We design and evaluate two GPU-based scheduling techniques to schedule datacenter-scale workloads through Kube-Knots on a ten node GPU cluster. Our proposed Correlation Based Prediction more » (CBP) and Peak Prediction (PP) schemes together improves both average and 99 th percentile cluster-wide GPU utilization by up to 80% in case of HPC workloads. In addition, CBP+PP improves the average job completion times (JCT) of deep learning workloads by up to 36% when compared to state-of-the-art schedulers. This leads to 33% cluster-wide energy savings on an average for three different workloads compared to state-of-the-art GPU-agnostic schedulers. Further, the proposed PP scheduler guarantees the end-to-end QoS for latency-critical queries by reducing QoS violations by up to 53% when compared to state-of-the-art GPU schedulers. « less
; ; ; ;
Award ID(s):
1763681 1931531
Publication Date:
Journal Name:
IEEE International Conference on Cluster Computing (CLUSTER)
Page Range or eLocation-ID:
1 to 13
Sponsoring Org:
National Science Foundation
More Like this
  1. Contemporary GPUs support multiple kernels to run concurrently on the same streaming multiprocessors (SMs). Recent studies have demonstrated that such concurrent kernel execution (CKE) improves both resource utilization and computational throughput. Most of the prior works focus on partitioning the GPU resources at the cooperative thread array (CTA) level or the warp scheduler level to improve CKE. However, significant performance slowdown and unfairness are observed when latency-sensitive kernels co-run with bandwidth-intensive ones. The reason is that bandwidth over-subscription from bandwidth-intensive kernels leads to much aggravated memory access latency, which is highly detrimental to latency-sensitive kernels. Even among bandwidth-intensive kernels, moremore »intensive kernels may unfairly consume much higher bandwidth than less-intensive ones. In this article, we first make a case that such problems cannot be sufficiently solved by managing CTA combinations alone and reveal the fundamental reasons. Then, we propose a coordinated approach for CTA combination and bandwidth partitioning. Our approach dynamically detects co-running kernels as latency sensitive or bandwidth intensive. As both the DRAM bandwidth and L2-to-L1 Network-on-Chip (NoC) bandwidth can be the critical resource, our approach partitions both bandwidth resources coordinately along with selecting proper CTA combinations. The key objective is to allocate more CTA resources for latency-sensitive kernels and more NoC/DRAM bandwidth resources to NoC-/DRAM-intensive kernels. We achieve it using a variation of dominant resource fairness (DRF). Compared with two state-of-the-art CKE optimization schemes, SMK [52] and WS [55], our approach improves the average harmonic speedup by 78% and 39%, respectively. Even compared to the best possible CTA combinations, which are obtained from an exhaustive search among all possible CTA combinations, our approach improves the harmonic speedup by up to 51% and 11% on average.« less
  2. Edge cloud data centers (Edge) are deployed to provide responsive services to the end-users. Edge can host more powerful CPUs and DNN accelerators such as GPUs and may be used for offloading tasks from end-user devices that require more significant compute capabilities. But Edge resources may also be limited and must be shared across multiple applications that process requests concurrently from several clients. However, multiplexing GPUs across applications is challenging. With edge cloud servers needing to process a lot of streaming and the advent of multi-GPU systems, getting that data from the network to the GPU can be a bottleneck,more »limiting the amount of work the GPU cluster can do. The lack of prompt notification of job completion from the GPU can also result in poor GPU utilization. We build on our recent work on controlled spatial sharing of a single GPU to expand to support multi-GPU systems and propose a framework that addresses these challenges. Unlike the state-of-the-art uncontrolled spatial sharing currently available with systems such as CUDA-MPS, our controlled spatial sharing approach uses each of the GPU in the cluster efficiently by removing interference between applications, resulting in much better, predictable, inference latency We also use each of the cluster GPU's DMA engines to offload data transfers to the GPU complex, thereby preventing the CPU from being the bottleneck. Finally, our framework uses the CUDA event library to give timely, low overhead GPU notifications. Our evaluations show we can achieve low DNN inference latency and improve DNN inference throughput by at least a factor of 2.« less
  3. Recent advancements in deep learning techniques facilitate intelligent-query support in diverse applications, such as content-based image retrieval and audio texturing. Unlike conventional key-based queries, these intelligent queries lack efficient indexing and require complex compute operations for feature matching. To achieve high-performance intelligent querying against massive datasets, modern computing systems employ GPUs in-conjunction with solid-state drives (SSDs) for fast data access and parallel data processing. However, our characterization with various intelligent-query workloads developed with deep neural networks (DNNs), shows that the storage I/O bandwidth is still the major bottleneck that contributes 56%--90% of the query execution time. To this end, wemore »present DeepStore, an in-storage accelerator architecture for intelligent queries. It consists of (1) energy-efficient in-storage accelerators designed specifically for supporting DNN-based intelligent queries, under the resource constraints in modern SSD controllers; (2) a similarity-based in-storage query cache to exploit the temporal locality of user queries for further performance improvement; and (3) a lightweight in-storage runtime system working as the query engine, which provides a simple software abstraction to support different types of intelligent queries. DeepStore exploits SSD parallelisms with design space exploration for achieving the maximal energy efficiency for in-storage accelerators. We validate DeepStore design with an SSD simulator, and evaluate it with a variety of vision, text, and audio based intelligent queries. Compared with the state-of-the-art GPU+SSD approach, DeepStore improves the query performance by up to 17.7×, and energy-efficiency by up to 78.6×.« less
  4. Specialized accelerators such as GPUs, TPUs, FPGAs, and custom ASICs have been increasingly deployed to train deep learning models. These accelerators exhibit heterogeneous performance behavior across model architectures. Existing schedulers for clusters of accelerators, which are used to arbitrate these expensive training resources across many users, have shown how to optimize for various multi-job, multiuser objectives, like fairness and makespan. Unfortunately, existing schedulers largely do not consider performance heterogeneity. In this paper, we propose Gavel, a heterogeneity-aware scheduler that systematically generalizes a wide range of existing scheduling policies. Gavel expresses these policies as optimization problems and then systematically transforms thesemore »problems into heterogeneity-aware versions using an abstraction we call effective throughput. Gavel then uses a round-based scheduling mechanism to ensure jobs receive their ideal allocation given the target scheduling policy. Gavel’s heterogeneity-aware policies allow a heterogeneous cluster to sustain higher input load, and improve end objectives such as makespan and average job completion time by 1.4⇥ and 3.5⇥ compared to heterogeneity-agnostic policies.« less
  5. Edge clouds can provide very responsive services for end-user devices that require more significant compute capabilities than they have. But edge cloud resources such as CPUs and accelerators such as GPUs are limited and must be shared across multiple concurrently running clients. However, multiplexing GPUs across applications is challenging. Further, edge servers are likely to require considerable amounts of streaming data to be processed. Getting that data from the network stream to the GPU can be a bottleneck, limiting the amount of work GPUs do. Finally, the lack of prompt notification of job completion from GPU also results in ineffectivemore »GPU utilization. We propose a framework that addresses these challenges in the following manner. We utilize spatial sharing of GPUs to multiplex the GPU more efficiently. While spatial sharing of GPU can increase GPU utilization, the uncontrolled spatial sharing currently available with state-of-the-art systems such as CUDA-MPS can cause interference between applications, resulting in unpredictable latency. Our framework utilizes controlled spatial sharing of GPU, which limits the interference across applications. Our framework uses the GPU DMA engine to offload data transfer to GPU, therefore preventing CPU from being bottleneck while transferring data from the network to GPU. Our framework uses the CUDA event library to have timely, low overhead GPU notifications. Preliminary experiments show that we can achieve low DNN inference latency and improve DNN inference throughput by a factor of ∼1.4.« less