Contemporary GPUs support multiple kernels to run concurrently on the same streaming multiprocessors (SMs). Recent studies have demonstrated that such concurrent kernel execution (CKE) improves both resource utilization and computational throughput. Most of the prior works focus on partitioning the GPU resources at the cooperative thread array (CTA) level or the warp scheduler level to improve CKE. However, significant performance slowdown and unfairness are observed when latency-sensitive kernels co-run with bandwidth-intensive ones. The reason is that bandwidth over-subscription from bandwidth-intensive kernels leads to much aggravated memory access latency, which is highly detrimental to latency-sensitive kernels. Even among bandwidth-intensive kernels, moremore »
Kube-Knots: Resource Harvesting through Dynamic Container Orchestration in GPU-based Datacenters
Compute heterogeneity is increasingly gaining prominence in modern datacenters due to the addition of accelerators like GPUs and FPGAs. We observe that datacenter schedulers are agnostic of these emerging accelerators, especially their resource utilization footprints, and thus, not well equipped to dynamically provision them based on the application needs. We observe that the state-of-the-art datacenter schedulers fail to provide fine-grained resource guarantees for latency-sensitive tasks that are GPU-bound. Specifically for GPUs, this results in resource fragmentation and interference leading to poor utilization of allocated GPU resources. Furthermore, GPUs exhibit highly linear energy efficiency with respect to utilization and hence proactive management of these resources is essential to keep the operational costs low while ensuring the end-to-end Quality of Service (QoS) in case of user-facing queries.Towards addressing the GPU orchestration problem, we build Knots, a GPU-aware resource orchestration layer and integrate it with the Kubernetes container orchestrator to build Kube- Knots. Kube-Knots can dynamically harvest spare compute cycles through dynamic container orchestration enabling co-location of latency-critical and batch workloads together while improving the overall resource utilization. We design and evaluate two GPU-based scheduling techniques to schedule datacenter-scale workloads through Kube-Knots on a ten node GPU cluster. Our proposed Correlation Based Prediction more »
- Publication Date:
- NSF-PAR ID:
- 10170705
- Journal Name:
- IEEE International Conference on Cluster Computing (CLUSTER)
- Page Range or eLocation-ID:
- 1 to 13
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Edge cloud data centers (Edge) are deployed to provide responsive services to the end-users. Edge can host more powerful CPUs and DNN accelerators such as GPUs and may be used for offloading tasks from end-user devices that require more significant compute capabilities. But Edge resources may also be limited and must be shared across multiple applications that process requests concurrently from several clients. However, multiplexing GPUs across applications is challenging. With edge cloud servers needing to process a lot of streaming and the advent of multi-GPU systems, getting that data from the network to the GPU can be a bottleneck,more »
-
Recent advancements in deep learning techniques facilitate intelligent-query support in diverse applications, such as content-based image retrieval and audio texturing. Unlike conventional key-based queries, these intelligent queries lack efficient indexing and require complex compute operations for feature matching. To achieve high-performance intelligent querying against massive datasets, modern computing systems employ GPUs in-conjunction with solid-state drives (SSDs) for fast data access and parallel data processing. However, our characterization with various intelligent-query workloads developed with deep neural networks (DNNs), shows that the storage I/O bandwidth is still the major bottleneck that contributes 56%--90% of the query execution time. To this end, wemore »
-
Specialized accelerators such as GPUs, TPUs, FPGAs, and custom ASICs have been increasingly deployed to train deep learning models. These accelerators exhibit heterogeneous performance behavior across model architectures. Existing schedulers for clusters of accelerators, which are used to arbitrate these expensive training resources across many users, have shown how to optimize for various multi-job, multiuser objectives, like fairness and makespan. Unfortunately, existing schedulers largely do not consider performance heterogeneity. In this paper, we propose Gavel, a heterogeneity-aware scheduler that systematically generalizes a wide range of existing scheduling policies. Gavel expresses these policies as optimization problems and then systematically transforms thesemore »
-
Edge clouds can provide very responsive services for end-user devices that require more significant compute capabilities than they have. But edge cloud resources such as CPUs and accelerators such as GPUs are limited and must be shared across multiple concurrently running clients. However, multiplexing GPUs across applications is challenging. Further, edge servers are likely to require considerable amounts of streaming data to be processed. Getting that data from the network stream to the GPU can be a bottleneck, limiting the amount of work GPUs do. Finally, the lack of prompt notification of job completion from GPU also results in ineffectivemore »