Aye-ayes (Daubentonia madagascariensis) are one of the 25 most critically endangered primate species in the world. Endemic to Madagascar, their small and highly fragmented populations make them particularly vulnerable to both genetic disease and anthropogenic environmental changes. Over the past decade, conservation genomic efforts have largely focused on inferring and monitoring population structure based on single nucleotide variants to identify and protect critical areas of genetic diversity. However, the recent release of a highly contiguous genome assembly allows, for the first time, for the study of structural genomic variation (deletions, duplications, insertions, and inversions) which are likely to impact a substantial proportion of the species’ genome. Based on whole-genome, short-read sequencing data from 14 individuals, >1,000 high-confidence autosomal structural variants were detected, affecting ∼240 kb of the aye-aye genome. The majority of these variants (>85%) were deletions shorter than 200 bp, consistent with the notion that longer structural mutations are often associated with strongly deleterious fitness effects. For example, two deletions longer than 850 bp located within disease-linked genes were predicted to impose substantial fitness deficits owing to a resulting frameshift and gene fusion, respectively; whereas several other major effect variants outside of coding regions are likely to impact gene regulatory landscapes. Taken together, this first glimpse into the landscape of structural variation in aye-ayes will enable future opportunities to advance our understanding of the traits impacting the fitness of this endangered species, as well as allow for enhanced evolutionary comparisons across the full primate clade.
more »
« less
A hybrid genome assembly of the endangered aye-aye ( Daubentonia madagascariensis )
Abstract The aye-aye (Daubentonia madagascariensis) is the only extant member of the Daubentoniidae primate family. Although several reference genomes exist for this endangered strepsirrhine primate, the predominant usage of short-read sequencing has resulted in limited assembly contiguity and completeness, and no protein-coding gene annotations have yet been released. Here, we present a novel, fully annotated, chromosome-level hybrid de novo assembly for the species based on a combination of Oxford Nanopore Technologies long reads and Illumina short reads and scaffolded using genome-wide chromatin interaction data—a community resource that will improve future conservation efforts as well as primate comparative analyses.
more »
« less
- PAR ID:
- 10547584
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- G3: Genes, Genomes, Genetics
- Volume:
- 14
- Issue:
- 10
- ISSN:
- 2160-1836
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In 1967 G.G. Simpson described three partial mandibles from early Miocene deposits in Kenya that he interpreted as belonging to a new strepsirrhine primate,Propotto. This interpretation was quickly challenged, with the assertion thatPropottowas not a primate, but rather a pteropodid fruit bat. The latter interpretation has not been questioned for almost half a century. Here we re-evaluate the affinities ofPropotto, drawing upon diverse lines of evidence to establish that this strange mammal is a strepsirrhine primate as originally suggested by Simpson. Moreover, our phylogenetic analyses support the recognition ofPropotto, together with late EocenePlesiopithecusfrom Egypt, as African stem chiromyiform lemurs that are exclusively related to the extant aye-aye (Daubentonia) from Madagascar. Our results challenge the long-held view that all lemurs are descended from a single ancient colonization of Madagascar, and present an intriguing alternative scenario in which two lemur lineages dispersed from Africa to Madagascar independently, possibly during the later Cenozoic.more » « less
-
Abstract The aye-aye (Daubentonia madagascariensis) is one of the 25 most endangered primate species in the world, maintaining amongst the lowest genetic diversity of any primate measured to date. Characterizing patterns of genetic variation within aye-aye populations, and the relative influences of neutral and selective processes in shaping that variation, is thus important for future conservation efforts. In this study, we performed the first whole-genome scans for positive and balancing selection in the species, utilizing high-coverage population genomic data from newly sequenced individuals. We generated null thresholds for our genomic scans by creating an evolutionarily appropriate baseline model that incorporates the demographic history of this aye-aye population, and identified a small number of candidate genes. Most notably, a suite of genes involved in olfaction—a key trait in these nocturnal primates—were identified as experiencing long-term balancing selection. We also conducted analyses to quantify the expected statistical power to detect positive and balancing selection in this population using site frequency spectrum–based inference methods, once accounting for the potentially confounding contributions of population history, mutation and recombination rate variation, as well as purifying and background selection. This work, presenting the first high-quality, genome-wide polymorphism data across the functional regions of the aye-aye genome, thus provides important insights into the landscape of episodic selective forces in this highly endangered species.more » « less
-
Larracuente, Amanda (Ed.)Abstract Given the many levels of biological variation in mutation rates observed to date in primates—spanning from species to individuals to genomic regions—future steps in our understanding of mutation rate evolution will not only be aided by a greater breadth of species coverage across the primate clade but also by a greater depth as afforded by an evaluation of multiple trios within individual species. In order to help bridge these gaps, we here present an analysis of a species representing one of the most basal splits on the primate tree (aye-ayes), combining whole-genome sequencing of seven parent–offspring trios from a three-generation pedigree with a novel computational pipeline that takes advantage of recently developed pan-genome graphs, thereby circumventing the application of (highly subjective) quality metrics that has previously been shown to result in notable differences in the detection of de novo mutations and ultimately estimates of mutation rates. This deep sampling has enabled both a detailed picture of parental age effects and sex dependency in mutation rates, which we here compare with previously studied primates, but has also provided unique insights into the nature of genetic variation in one of the most endangered primates on the planet.more » « less
-
Abstract Gaining a better understanding of the rates and patterns of meiotic recombination is crucial for improving evolutionary genomic modeling, with applications ranging from demographic to selective inference. Although previous research has provided important insights into the landscape of crossovers in humans and other haplorrhines, our understanding of both the considerably more common outcome of recombination (i.e. noncrossovers) as well as the landscapes in more distantly related primates (i.e. strepsirrhines) remains limited owing to difficulties associated with both the identification of noncrossover tracts as well as species sampling. Thus, in order to elucidate recombination patterns in this understudied branch of the primate clade, we here characterize crossover and noncrossover landscapes in aye-ayes utilizing whole-genome sequencing data from six three-generation pedigrees and three two-generation multi-sibling families, and in so doing provide novel insights into this important evolutionary process shaping genomic diversity in one of the world's most critically endangered primate species.more » « less
An official website of the United States government
