skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Accretion and ablation in deformable solids with an Eulerian description: examples using the method of characteristics
Accretion and ablation, i.e., the addition and removal of mass at the surface, are important in a wide range of physical processes, including solidification, growth of biological tissues, environmental processes, and additive manufacturing. The description of accretion requires the addition of new continuum particles to the body, and is therefore challenging for standard continuum formulations for solids that require a reference configuration. Recent work has proposed an Eulerian approach to this problem, enabling side-stepping of the issue of constructing the reference configuration. However, this raises the complementary challenge of determining the stress response of the solid, which typically requires the deformation gradient that is not immediately available in the Eulerian formulation. To resolve this, the approach introduced the elastic deformation as an additional kinematic descriptor of the added material, and its evolution has been shown to be governed by a transport equation. In this work, the method of characteristics is applied to solve concrete simplified problems motivated by biomechanics and manufacturing. Specifically, (1) for a problem with both ablation and accretion in a fixed domain and (2) for a problem with a time-varying domain, the closed-form solution is obtained in the Eulerian framework using the method of characteristics without explicit construction of the reference configuration.  more » « less
Award ID(s):
1635407 2118945 2108784 2118864 2012259
PAR ID:
10547597
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Mathematics and Mechanics of Solids
Volume:
27
Issue:
6
ISSN:
1081-2865
Format(s):
Medium: X Size: p. 989-1010
Size(s):
p. 989-1010
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we formulate a geometric nonlinear theory of the mechanics of accreting–ablating bodies. This is a generalization of the theory of accretion mechanics of Sozio & Yavari (Sozio & Yavari 2019J. Nonlinear Sci.29, 1813–1863 (doi:10.1007/s00332-019-09531-w)). More specifically, we are interested in large deformation analysis of bodies that undergo a continuous and simultaneous accretion and ablation on their boundaries while under external loads. In this formulation, the natural configuration of an accreting–ablating body is a time-dependent Riemannian 3 -manifold with a metric that is an unknowna prioriand is determined after solving the accretion–ablation initial-boundary-value problem. In addition to the time of attachment map, we introduce a time of detachment map that along with the time of attachment map, and the accretion and ablation velocities, describes the time-dependent reference configuration of the body. The kinematics, material manifold, material metric, constitutive equations and the balance laws are discussed in detail. As a concrete example and application of the geometric theory, we analyse a thick hollow circular cylinder made of an arbitrary incompressible isotropic material that is under a finite time-dependent extension while undergoing continuous ablation on its inner cylinder boundary and accretion on its outer cylinder boundary. The state of deformation and stress during the accretion–ablation process, and the residual stretch and stress after the completion of the accretion–ablation process, are computed. This article is part of the theme issue ‘Foundational issues, analysis and geometry in continuum mechanics’. 
    more » « less
  2. Abstract Synchronous reluctance motors (SynRMs) have gained considerable attention in the field of electric vehicles as they reduce the need for permanent magnets in the rotor, resulting in less material and manufacturing costs. However, their lower average torque and torque ripple vibrations have been identified as key issues that require resolution. In this study, we present a SynRM design framework employing the cardinal basis functions (CBF)-based parametric level set method. The SynRms design problem is recast as a variational problem constrained by Maxwell’s equations which describe the behavior of electric and magnetic fields in the SynRM. A continuum shape sensitivity analysis is carried out using the material derivative and adjoint method. A distance regularization energy function is employed to maintain the level set function as a signed distance function during the optimization. The parametric topology optimization problem is computationally solved using the Method of Moving Asymptotes (MMA). To demonstrate the effectiveness of our approach, we present a numerical example that compares the torque characteristics of the optimal design with those of a reference design. Preliminary results show that the optimized SynRM has a 30.30% increase in average torque, along with a slight increase in torque ripple, compared to the reference model. 
    more » « less
  3. In manufacturing, causal relations between components have become crucial to automate assembly lines. Identifying these relations permits error tracing and correction in the absence of domain experts, in addition to advancing our knowledge about the operating characteristics of a complex system. This paper is motivated by a case study focusing on deciphering the causal structure of a wafer manufacturing system using data from sensors and abnormality monitors deployed within the assembly line. In response to the distinctive characteristics of the wafer manufacturing data, such as multimodality, high-dimensionality, imbalanced classes, and irregular missing patterns, we propose a hierarchical ensemble approach. This method leverages the temporal and domain constraints inherent in the assembly line and provides a measure of uncertainty in causal discovery. We extensively examine its operating characteristics via simulations and validate its effectiveness through simulation experiments and a practical application involving data obtained from Seagate Technology. Domain engineers have cross-validated the learned structures and corroborated the identified causal relationships. 
    more » « less
  4. This paper describes a class of shape optimization problems for optical metamaterials comprised of periodic microscale inclusions composed of a dielectric, low-dimensional material suspended in a non-magnetic bulk dielectric. The shape optimization approach is based on a homogenization theory for time-harmonic Maxwell's equations that describes effective material parameters for the propagation of electromagnetic waves through the metamaterial. The control parameter of the optimization is a deformation field representing the deviation of the microscale geometry from a reference configuration of the cell problem. This allows for describing the homogenized effective permittivity tensor as a function of the deformation field. We show that the underlying deformed cell problem is well-posed and regular. This, in turn, proves that the shape optimization problem is well-posed. In addition, a numerical scheme is formulated that utilizes an adjoint formulation with either gradient descent or BFGS as optimization algorithms. The developed algorithm is tested numerically on a number of prototypical shape optimization problems with a prescribed effective permittivity tensor as the target. 
    more » « less
  5. Transport of cells in fluid flow plays a critical role in many physiological processes of the human body. Recent developments of in vitro techniques have enabled the understanding of cellular dynamics in laboratory conditions. However, it is challenging to obtain precise characteristics of cellular dynamics using experimental method alone, especially under in vivo conditions. This challenge motivates new developments of computational methods to provide complementary data that experimental techniques are not able to provide. Since there exists a large disparity in spatial and temporal scales in this problem, which requires a large number of cells to be simulated, it is highly desirable to develop an efficient numerical method for the interaction of cells and fluid flows. In this work, a new Fluid-Structure Interaction formulation is proposed based on the use of hybrid continuum-particle approach, which can resolve local dynamics of cells while providing large-scale flow patterns in the vascular vessel. Here, the Dissipative Particle Dynamics (DPD) model for the cellular membrane is used in conjunction with the Immersed Boundary Method (IBM) for the fluid plasma. Our results show that the new formulation is highly efficient in computing the deformation of cells within fluid flow while satisfying the incompressibility constraints of the fluid. We demonstrate that it is possible to couple the DPD with the IBM to simulate the complex dynamics of Red Blood Cells (RBC) such as parachuting. Our key observation is that the proposed coupling enables the simulation of RBC dynamics in realistic arterioles while ensuring the incompressibility constraint for fluid plasma. Therefore, the proposed method allows an accurate estimation of fluid shear stresses on the surface of simulated RBC. Our results suggest that this hybrid methodology can be extended for a variety of cells in physiological conditions. 
    more » « less