Abstract Let $$k \leq n$$ be positive integers, and let $$X_n = (x_1, \dots , x_n)$$ be a list of $$n$$ variables. The Boolean product polynomial$$B_{n,k}(X_n)$$ is the product of the linear forms $$\sum _{i \in S} x_i$$, where $$S$$ ranges over all $$k$$-element subsets of $$\{1, 2, \dots , n\}$$. We prove that Boolean product polynomials are Schur positive. We do this via a new method of proving Schur positivity using vector bundles and a symmetric function operation we call Chern plethysm. This gives a geometric method for producing a vast array of Schur positive polynomials whose Schur positivity lacks (at present) a combinatorial or representation theoretic proof. We relate the polynomials $$B_{n,k}(X_n)$$ for certain $$k$$ to other combinatorial objects including derangements, positroids, alternating sign matrices, and reverse flagged fillings of a partition shape. We also relate $$B_{n,n-1}(X_n)$$ to a bigraded action of the symmetric group $${\mathfrak{S}}_n$$ on a divergence free quotient of superspace.
more »
« less
Hodge–Riemann Relations for Schur Classes in the Linear and Kähler Cases
We prove a version of the Hodge–Riemann bilinear relations for Schur polynomials of Kähler forms and for Schur polynomials of positive forms on a complex vector space.
more »
« less
- Award ID(s):
- 1749447
- PAR ID:
- 10547651
- Publisher / Repository:
- International Mathematics Research Notices
- Date Published:
- Journal Name:
- International Mathematics Research Notices
- Volume:
- 2023
- Issue:
- 16
- ISSN:
- 1073-7928
- Page Range / eLocation ID:
- 13780 to 13816
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ivan Cheltsov, Xiuxiong Chen (Ed.)We prove that Schur classes of nef vector bundles are limits of classes that have a property analogous to the Hodge-Riemann bilinear relations. We give a number of applications, including (1) new log-concavity statements about characteristic classes of nef vector bundles (2) log-concavity statements about Schur and related polynomials (3) another proof that normalized Schur polynomials are Lorentzian.more » « less
-
Schur polynomials are special cases of Schubert polynomials, which in turn are special cases of dual characters of flagged Weyl modules. The principal specialization of Schur and Schubert polynomials has a long history, with Macdonald famously expressing the principal specialization of any Schubert polynomial in terms of reduced words. We prove a lower bound on the principal specialization of dual characters of flagged Weyl modules. Our result yields an alternative proof of a conjecture of Stanley about the principal specialization of Schubert polynomials, originally proved by Weigandt.more » « less
-
null (Ed.)Abstract We introduce two new bases of the ring of polynomials and study their relations to known bases. The first basis is the quasi-Lascoux basis, which is simultaneously both a $$K$$ -theoretic deformation of the quasi-key basis and also a lift of the $$K$$ -analogue of the quasi-Schur basis from quasi-symmetric polynomials to general polynomials. We give positive expansions of this quasi-Lascoux basis into the glide and Lascoux atom bases, as well as a positive expansion of the Lascoux basis into the quasi-Lascoux basis. As a special case, these expansions give the first proof that the $$K$$ -analogues of quasi-Schur polynomials expand positively in multifundamental quasi-symmetric polynomials of T. Lam and P. Pylyavskyy. The second new basis is the kaon basis, a $$K$$ -theoretic deformation of the fundamental particle basis. We give positive expansions of the glide and Lascoux atom bases into this kaon basis. Throughout, we explore how the relationships among these $$K$$ -analogues mirror the relationships among their cohomological counterparts. We make several “alternating sum” conjectures that are suggestive of Euler characteristic calculations.more » « less
An official website of the United States government

